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ABSTRACT 
 

Design optimization of cable-stayed bridges is a challenging optimization problem because a 

large number of variables is usually involved in the optimization process. For these 

structures the design variables are cross-sectional areas of the cables. In this study, an 

efficient metaheuristic algorithm namely, momentum search algorithm (MSA) is used to 

optimize the design of cable-stayed bridges. The MSA is inspired by the Physics and its 

superiority over many metaheuristics has been demonstrated in tackling several standard 

benchmark test functions. In the current work, the performance of MSA is compared with 

that of two other metaheuristics and it is shown that the MSA is an efficient algorithm to 

tackle the optimization problem of cable-stayed bridges.  

 
Keywords: cable-stayed bridge; structural optimization; metaheuristic algorithm; particle swarm 

optimization. 
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1. INTRODUCTION 
 

Due to their excellent stability, beautiful appearance, relatively low design and maintenance 

costs, cable-stayed bridge (CSB) structures have become very popular among structural 

engineers and designers in recent decades. The CSBs are one of the most economical 

options to build bridges with large spans. These bridges rely on durable steel cables as the 

main structural elements, which in terms of cable arrangement, the most common types of 

these bridges are fan cable bridge, semi-fan and harp bridges [1]. Due to the structural 

system of this type of bridges, their stiffness is higher than suspension bridges. The forces 

resulting from the weight of the deck and other loads are supplied and transmitted through 

the cables to the bridge pylons and these forces are transferred through the pylons to the 

bridge foundation and the pile group and from there to the bed. Therefore, the most 
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important points in designing CSBs are the arrangement of the cables, the shape of pylons, 

how the forces are applied to the pylons and the control of the bridge deck [1-3]. Due to the 

expansion of the use of this type of bridges in transportation and life line and significant 

progress of design knowledge, the need for optimal design of these structures to improve 

their structural behaviour and reduce the construction and maintenance costs are a very 

important task [4].  

In general, there are two types of optimization techniques: gradient-based methods and 

metaheuristics. Many of gradient-based methods have difficulties when dealing with 

complex and discrete optimization problems, and they usually converge to local optima. In 

order to overcome these difficulties, it is necessary to use global search algorithms such as 

metaheuristics. Metaheuristics are designated based on stochastic natural phenomena and 

they have attracted a great deal of attention during the last two decades. As the metaheuristic 

optimization techniques require no gradient computations, they are simple for computer 

implementation. During the recent years, researchers have designed many metaheuristic 

algorithms and many successful applications of them have been reported in optimization 

literature. The purpose of this study is to optimally design CSBs using momentum search 

algorithm (MSA) [5] as an an efficient metaheuristic algorithm. The MSA is designed based 

on the law of conservation of momentum. This algorithm includes a set of masses 

considering the conservation of momentum and kinetic energy of bodies in an n-dimensional 

space. At each iteration of MSA, all bodies are moved toward the optimal solution by 

colliding an external body to them. The superiority of the MSA over many metaheuristics 

including particle swarm optimization (PSO), genetic algorithm (GA), gravitational search 

algorithm (GSA), grey wolf optimizer (GWO), teaching–learning-based optimization 

(TLBO), grasshopper optimization algorithm (GOA), emperor penguin optimizer (EPO) and 

spotted hyena optimizer (SHO) has been demonstrated in tackling several standard 

benchmark test functions [5].     

In the present work, the performance of MSA is compared with that of PSO [6], colliding 

bodies optimization (CBO) [7] and enhanced colliding bodies optimization (ECBO) [8] in 

solving the optimization problem of CSBs. The numerical results indicate that the obtained 

optimal design and convergence rate of the MSA is better than those of other algorithms 

used in literature for tackling the optimization problem of CSBs.   

 

 

2. OPTIMIZATION OF CABLE-STAYED BRIDGES 
 

Due to the high construction cost of CSBs, their optimization is of high importance and it is 

a challenging task. CSBs are large, complex and statically indeterminate structures that 

consist of three main components: deck, pylon and cables [1]. The general behaviour of such 

structures is influenced by the interaction of many design parameters such as the length of 

the main span, bridge height, number of cables and their arrangement, pylon shape and 

materials used in the bridge structure, load distribution and stiffness among structural 

components [2]. Every design effort has a high volume of calculations. Analyses should be 

performed considering the effects of geometric nonlinearities such as cable swelling due to 

its weight (sag effect), large deformations and P-delta [3]. The design must estimate all the 

performance condition and resistance specified in the design codes and regulations. All of 
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these are repetitive, tedious, time consuming and expensive. The uncertainty of most cable-

stayed bridges, the large number of design variables, the restrictions imposed by design 

codes, the geometric nonlinear behaviour, the enormous impact of cable retraction forces 

make optimization solutions difficult to obtain using traditional design methods. Previously, 

some algorithms have been proposed in existing papers to solve the optimization problem of 

CSBs. Simoes and Negrao [4] proposed an entropy-based optimization algorithm to 

optimize the cost of a cable-stayed bridge. The position of the cables and their connection to 

the deck and pylons, the cross-sectional characteristics of the deck, the pylons and the cables 

were considered as design variables. In their study, post tensioning forces were not 

considered. In addition, they assumed that the number of cables and the main span length 

were fixed and predetermined. Long et al. [9] used an algorithm to optimize the cost of 

composite deck (steel-concrete) cable-stayed bridges. In their study, the effect of cable post 

tensioning forces was not considered and only the dimensions of the sections of the bridge 

components were considered as design variables. Pylon height, main span length and 

number of traction cables were assumed as fixed parameters. Simoes and Negrao [10] used a 

convex scalar function to minimize the cost of a bridge equipped with a box deck. This 

function is a combination of the cross-sectional dimensions of different bridge components 

and the forces of traction cables. Chen et al. [11] reported a method for calculating the 

cables strength and showed that this method is very sensitive to the choice of constraints, 

which must be chosen very carefully to obtain a practical output. Lute et al. [12] examined 

the ability of a supportive vector machine which is a learning method for regression, to 

reduce the computation time of a genetic algorithm for optimizing CSBs. In their study, the 

number of traction cables is considered as a predetermined variable and also the impact of 

post tensioning forces has not been considered. Hassan [13] proposed the use of genetic 

algorithm and B-Spline technique to optimize the weight of cables and the post tensioning 

force in stretched cable bridge. 

Figs. 1 to 3 show all the parameters describing a CSB. Dimensions (TL1, TL2, Ha) are 

considered as the main variables in the optimization process and other dimensions remain 

constant and are defined by the user which include the total length of the bridge (L), middle 

span (M), side spans (S) and the heights of the tower under the deck (𝐻𝑏), which are 

determined acording to topographic and navigation conditions. The width of the deck also 

includes a fixed distance between obstacles because it is controlled according to traffic 

needs and the number of lanes. The main beam (I) has six dimensions 𝐵𝐹𝑇 ،𝐵𝐹𝐵  ، 𝑡𝐹𝑇   ، 𝑡𝐹𝐵   ،

𝑡𝑤 ، 𝐻𝐺 which are considered as secondary variables in this study. Instead of optimizing the 

six main dimensions of the I-shaped steel girder, its moment of inertia is optimized to 

minimize its surface area. Other secondary variables are the pre-tensioning forces of the 

cables and their cross section, number and type of cable arrangement. 

 

 
Figure 1. Geometry of cable-stayed bridge  
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Figure 2. (a) Cross-section of the bridge deck and (b) Steel main girder 

 

 

 

(a) (b) 
Figure 3. (a) dimensions of the pylon, (b) cross section of the pylon 

 

In order to achieve small displacements and better flexural moment distribution in decks 

and towers, there are six main variables listed below:  

(1) Total number of cables (2×4×N) so that N is the number of cables in the side village 

(or in half of the main span) 

(2) Moment of inertia of the steel beam of the deck about its main axis 

(3) The thickness of the concrete slab (𝑡𝑠); 

(4) Tower height above the deck surface (𝐻𝑎); 

(5) External dimension of the tower cross-section in the longitudinal direction (TL1); 

(6) External dimension of the tower cross-section in the transverse direction (TL2); 

If the concept of primary and secondary variables is not considered, the total number of 

design variables varies between 23 and 35 for the number of cables N=6 and N=12, and also 

when using bridge symmetry for larger spans, traction cables number and design variables 
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become even more. Since these parameters are more dependent on the characteristics and 

conditions of the bridge, the number of variables can be reduced from 23 or 35, compared to 

the work of Hassan [13], to 6 or 4. In addition, the ratio of the side span (S) to the main span 

of the bridge (M), represented by β, varies between 0.40 and 0.60 in the real world CSBs, the 

total number of design variables will be 6. In this case, L is assumed to be constant and the 

ratio β will be drawn from interval [0.4, 0.6]. 

 

𝑀 =
𝐿

2𝛽 + 1
 (1) 

𝛽 =
𝑆

𝑀
 (2) 

 

Three types of loads are applied to the CSB structure including [14]: dead loads of the 

total weight of the structure (6.5 kN/m2), initial post tensioning force of the cables, and live 

loads (9 kN/m2) according to the patters of Fig. 4.  

 

 
Figure 4. Live load cases  

 

2.1 Arrangment of cables  

There are three main arrangements for cables in CSBs namely, Harp, Fan and Semi-Fan as 

shown in Fig. 5. In the harp arrangement, the cables are made nearly parallel by attaching 

them to different points on the pylon. In the Fan pattern, all the stay cables are attached to a 

single point at top of each pylon. The relatively steep slope of the stay cables results in 
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smaller cable cross section in comparison to the harp type. Moreover, the horizontal cable 

forces in the deck in this arrangement is less than the harp type [2]. In the Semi-Fan 

arrangement, the cables are distributed over the upper part of the pylon, which are more 

steeply inclined close to the pylon. Among the three types of cable bridge arrangement, the 

Harp arrangement has the most tensile cable forces in all its cables. Semi-fan arrangement 

has the minimum forces of traction cable and fan arrangement is between these two 

arrangements. Several modern cable-stayed bridges have been built around the world using 

semi-fan arrangement due to its efficiency [14-15]. In the current study, Semi-fan 

arrangement is used for arrangement of cables in CSBs.  

 

 
Figure 5. (a) Harp, (b) Fan, and (c) Semi-Fan arrangements of cables in cable-stayed bridges 

 

2.1 Objective function and design constraints  

In the present study, the objective function of the CSB optimization problem is the weight of 

steel of the stay cables expressed as follows: 

 





nc

i

iii ALW
1

  (3) 

where γi, Li, and Ai are the unit weight, length, and cross-sectional area of ith stay cable, 

respectively; and nc is the number of stay cables. 

The design constraints for stay cable stress, vertical deflection of the deck, and horizontal 

deflection of the pylons are defined as follows: 

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
3.

13
.1

.5
38

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 s

ae
.iu

st
.a

c.
ir

 o
n 

20
25

-1
1-

10
 ]

 

                             6 / 16

http://dx.doi.org/10.22068/ijoce.2023.13.1.538
https://sae.iust.ac.ir/ijoce/article-1-538-en.html


OPTIMAL DESIGN OF CABLE-STAYED BRIDGES USING … 

 

 

7 

𝑔𝑖
𝜎 =

𝜎𝑖

𝜎𝑎𝑙𝑙

− 1 ≤ 0 (4) 

𝑔𝑖
𝛿 =

𝛿𝑖

𝛿𝑎𝑙𝑙

− 1 ≤ 0 (5) 

𝑔𝑗
∆ =

∆𝑗

∆𝑎𝑙𝑙

− 1 ≤ 0 (6) 

 

where σi and σall are the maximum tensile stress in ith stay cable for all the considered load 

cases and the allowable stress, respectively; δi and δall are the maximum vertical deflection 

of the deck at the cable position i for all the considered load cases and the allowable vertical 

deflection, respectively; Δj and Δall are the maximum horizontal deflection of the tops of the 

jth pylon in the longitudinal direction of the bridge deck for all the considered load cases and 

the allowable horizontal deflection, respectively. 

 

2.2 Optimization problem formulation  

The optimization problem of CBFs can be expressed in standard mathematical terms as 

follows: 

 

Minimize: W (7) 

Subject to: {

𝑔
𝑖
𝜎 ≤ 0 , 𝑖 = 1,2, … , 𝑁

𝑔
𝑖
𝛿 ≤ 0 , 𝑖 = 1,2, … , 𝑁

𝑔
𝑗
∆ ≤ 0 , 𝑗 = 1,2, … , 𝑁𝑝

 (8) 

 

where 𝑁𝑝 is the number of pylons.  

In this study, to transform the above-mentioned constrained optimization problem of 

CSBs into an unconstrained one the exterior penalty function method (EPFM) is employed 

as follows: 

 

∅ = 𝑊 + 𝑟𝑝 ∑[𝑚𝑎𝑥{0 𝑔𝑘}]2

𝑛𝑐

𝑘=1

 (9) 

 

where ∅, 𝑟𝑝 and 𝑘 are the pseudo objective function, positive penalty parameter and the 

number of design constraints, respectively. 

 

3. METAHEURISTIC ALGORITHMS 
 

Metaheuristics are applied to a very wide range of problems and they mimic natural 

metaphors to solve complex optimization problems. In the current study, PSO, CBO, ECBO 
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and MSA metaheuristics are applied to solve the optimization problem of CSBs. Theoretical 

background of these algorithms are explained below. 

 

3.1 Particle swarm optimization  

Eberhart and Kennedy [6] proposed PSO to simulate the motion of bird swarms. The 

position of each particle is updated based on the social behavior of the swarm, which adapts 

to its environment by returning to promising regions of design space previously discovered 

and searching for better positions over time. Numerically, the position of the ith particle, Xi, 

at iteration t+1 is updated as follows: 

 
11   t

i
t
i

t
i VXX  (10) 

   tit

best

t

i

t

i

t

i

t

i XGrcXPrcωVV 

2211

1

 

(11) 

t.
t

ωω
ωω

max

minmax
max




 (12) 

where t
iV  is the velocity vector at iteration t; r1 and r2 represents random numbers between 0 

and 1;
 

t
iP  represents the best ever particle position of particle i; tGbest corresponds to the 

global best position in the swarm up to iteration t; c1, and c2 are social parameters; ωmax and 

ωmin are the maximum and minimum values of ω, respectively; and tmax is the number of 

maximum iterations. 

 

3.2 Colliding bodies optimization 

Colliding bodies optimization (CBO) is a meta-heuristic search algorithm that is developed 

by Kaveh and Mahdavi [7] based on the collision between objects. Collisions between 

bodies are governed by the laws of momentum and energy. When a collision occurs in an 

isolated system, the total momentum of the system of objects is conserved. Provided that 

there are no net external forces acting upon the objects, the momentum of all objects before 

the collision equals the momentum of all objects after the collision. In this optimization 

technique, one object collides with other object and they move towards a minimum energy 

level. The CBO is simple in concept and does not depend on any internal parameter. In 

CBO, each solution candidate is considered as a colliding body (CB). Each CB, has a mass 

defined as follows: 

 

𝑚𝑖(𝑡) =
1

𝑓𝑖(𝑡)
 (13) 

 

where 𝑓𝑖(𝑡) is the fitness value of ith body. 

In order to select pairs of objects for collision, CBs are divided into two equal groups: 

(a) Stationary group; 
2

1,2,...,
n

iS   and (b) Moving group; n...
n

,
n

iM ,,2
2

1
2

  

The velocities of stationary and moving bodies before collision are evaluated as follows: 
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0
Si

V  (14) 

MSM iii XXV 

 
(15) 

 

The velocities of stationary and moving bodies after collision are evaluated as follows: 

 

M

MS

M

S i

ii

i

i V
mm

m
V




















)1( 
 (16) 

M

MS

SM

M i

ii

ii

i V
mm

mm
V




















)( 

 
(17) 

max

1
iter

iter


 (18) 

 

where iter and itermax are the current iteration number and the total number of iterations for 

optimization process, respectively; ε is the coefficient of restitution (COR). 

The new position of each CB is calculated as follows: 

 

SSSS iiii V.RXX new  (19) 

MMMM iiii V.RXX new

 

(20) 

 

where 
Si

R and 
Mi

R are random vectors uniformly distributed in the range of [-1,1]. 

 

3.3 Enhanced colliding bodies optimization 

Enhanced CBO (ECBO) has been proposed by Kaveh and Ilchi [8] to improve convergence 

rate and reliability of CBO by adding a memory to save some of the best solutions during 

the optimization process and also utilizing a mutation operator to decrease the probability of 

trapping into local optima. The basic steps of ECBO are summarized as follows: 

1. The initial positions of all colliding bodies (CBs) are determined randomly in an m-

dimensional search space using Eq. (21). 

 

niXX.RXX i 1,2,..., , )( minmaxmin

0   (21) 

 

in which 0

iX  is the initial solution vector of the ith CB. Here, Xmin and Xmax are respectively 

the lower and upper bounds of design variables; R is a random vector in the interval [0, 1]; n 

is the number of CBs. 

2. The value of mass for each CB is evaluated using Eq. (13). 
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3. Colliding memory (CM) is utilized to save a number of historically best CB vectors and 

their related mass and objective function values. Solution vectors which are saved in CM 

are added to the population and the same number of current worst CBs are deleted. 

Finally, CBs are sorted according to their masses in a decreasing order. 

4. CBs are divided into two groups namely, Stationary and Moving groups. 

5. The velocities of CBs before collision are evaluated using Eqs. (14) and (15). 

6. The velocities of CBs after collision are evaluated using Eqs. (16) to (18). 

7. The new position of each CB is calculated using Eqs. (19) and (20). 

8. A parameter like pro within (0, 1) is introduced and it is specified whether a component 

of each CB must be changed or not. For each CB, pro is compared with rni (i=1,…,n) 

which is a random number uniformly distributed within (0, 1). If rni < pro, one dimension 

of the ith CB is selected randomly and its value is regenerated in interval [Xmin, Xmax]. In 

order to protect the structures of CBs, only one dimension is changed. In the framework 

of ECBO, the value of pro is considered to be 0.3. 

When a stopping criterion is satisfied, the optimization process is terminated and the best 

design found is considered as the optimal solution. 

   

3.4 Momentum search algorithm 

Momentum search algorithm (MSA), is based on two important physics’ laws: momentum 

conservation law and kinetic energy conservation law [16]. The MSA includes a number of 

bodies called solution bodies in a closed system considering the conservation of momentum 

and kinetic energy of masses. At every iteration of this algorithm, the position of bodies 

represents the possible solutions. As the mass of the bodies reflects their fitness value during 

the optimization process, heavier bodies are associated with better solutions. At each 

iteration, an external body collides separately with all solution bodies and moves them in a 

random direction which is not in reverse with the direction toward the iteration’s best 

solution. The better solutions are moving slower than the worse solutions which are lighter. 

The mass and the speed of the external body are reduced during each iteration. In this way, 

the algorithm preserves two important concepts in the heuristic algorithms: exploration and 

exploitation [5]. The MSA has three main steps. The first step includes forming an artificial 

time-discrete and closed system and positioning for all bodies considering constraints of the 

problem. The second step includes implementing motion and conservation laws. The third 

step includes letting time to pass in discrete steps until a stopping criterion is met. The 

flowchart and pseudocode of MSA have been provided in [5]. The mentioned steps are 

briefly explained in the following.. 

In the first step, an artificial time-discrete and closed system is considered to form a 

specified space for placing a limited number of bodies. This space includes an n-dimensional 

coordinate system in which each point can be a solution of the problem. If there are m 

motionless solution bodies in the initial population, the position of ith body in time t is 

shown by 𝑋𝑖(𝑡)  and its dth components in a n-dimensional design space is shown by 

𝑥𝑖
(𝑑)

(𝑡). At iteration t, the mass of ith body is defined as follows [5]: 

𝑚𝑖(𝑡) =
𝑓𝑖(𝑡) − 𝑤𝑖(𝑡)

𝑏𝑖(𝑡) − 𝑤𝑖(𝑡)
 (22) 
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where 𝑓𝑖(𝑡) is the fitness value of ith body; 𝑤𝑖(𝑡) and 𝑏𝑖(𝑡) are the maximum and minimum 

values of fitness at iteration t.  

At every iteration, all solution bodies are motionless, and there is a separate external 

body in the space called external body. Such body collides with all other bodies and changes 

their positions toward better ones. Since we know by the passage of time, all bodies 

approach to the sub-optimum point, it is essential for bodies to search the space with smaller 

and more accurate steps. In order to achieve this task, the mass and velocity of external body 

decrease in time with the maximum mass of unity for external body. The mass of the 

external body at iteration t is calculated as follows [5]: 

 

𝑀(𝑡) = 1 −
𝑡 − 1

𝑇 − 1
 (23) 

 

where 𝑇 is the maximum number of iterations.  

The speed of the external body should also get decreased over time. The speed of the 

external body which collides with ith body at iteration t is as follows [5]: 

 

𝑈𝑖(𝑡) = 𝑟1. 𝑀(𝑡). 𝑈𝑚𝑎𝑥. 𝑠𝑖𝑔𝑛(𝑋𝑏(𝑡) − 𝑋𝑖(𝑡)) (24) 

 

where 𝑟1 is a random number drawn from a uniform distribution between 0 and 1; 𝑈𝑚𝑎𝑥 is 

the maximum speed of external body; 𝑋𝑏(𝑡) is the best solution found up to iteration t.  

After collision with ith body at time t, by implementing the momentum and kinetic 

energy conservation laws, the speed of bodies is determined as follows [5]: 

 

𝑉𝑖(𝑡) =
2𝑀(𝑡)

𝑚𝑖(𝑡) + 𝑀(𝑡)
 . 𝑈𝑖(𝑡) (25) 

 

The new position of ith body at time t is determined as follows [5] in which where 𝑟2 is a 

random number drawn from a uniform distribution between 0 and 1. 

 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟2. 𝑉𝑖(𝑡) (26) 

 

 

4. NUMERICAL RESULTS 
 

In this study, the geometry of the chosen bridge is similar to the Quincy Bayview Bridge, 

located in Illinois, USA [17] as shown in Fig. 1. In this case 𝑀=285.6 m, 𝑆=128.1 m and 

H=87 m. Cross-section of the bridge deck, steel main girder and dimensions of the pylons 

are shown in Figs 2 and 3, respectively and the values of variables related to them are taken 

same as those in [13]. By the way, the cross-sectional area of forty cables shown in Fig. 1 

are the design variables of the CSB optimization problem. In the structural model of CSBs, 
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the cables are defined as truss elements. The flexural rigidity of the cables is ignored and the 

equivalent cable’s modulus of elasticity used to account for the sag effect is as follows [13]: 

 

𝐸𝑒𝑞 =
𝐸

1 +
(𝑤. 𝑙)2. 𝐴. 𝐸

12𝐹3

  (27) 

 

where 𝐸𝑒𝑞 is the equivalent modulus of elasticity; E is the cable elastic modulus; w is the 

weight per unit length of the cable; l is horizontal projected length of a cable; A is the cross-

sectional area of the cable; and F is the tension force of the cable. In this work, the unit 

weight of stay cables is 77 kN/m3. According to [15,17,18], the allowable tensile stress in 

cables, the allowable vertical deflection of the deck, and the allowable horizontal deflection 

of the pylons are considered as 1600 MPa, M/550 = 0.5192 m, and H/550, respectively 

during the optimization process. The finite element model for structural analysis of CSBs is 

validated using the optimal design reported in [13].   

For PSO, CBO, ECBO and MSA metaheuristics, the population size and maximum 

number of optimization iterations are considered as 50 and 200, respectively. In the current 

work, 20 independent optimization runs are performed and the results obtained by PSO, 

CBO, ECBO and MSA are compared with that of reported in [13] in Table 1. In addition, 

the convergence curves of PSO, CBO, ECBO and MSA for their best designs are compared 

in Fig. 6. 

The numerical results indicate that the optimal weight of the best design found by MSA 

is 30.82%, 3.41%, 1.99% and 0.61% lighter than those found by GA[13], PSO, CBO and 

ECBO algorithms, respectively. Furthermore, the comparison of the convergence curves in 

Fig. 6 shows that the convergence rate of MSA is better than that of other metaheuristic 

algorithms. Therefore, it can be concluded that the MSA outperforms the other algorithms in 

terms of best weight, mean weight, worst weight, standard deviation (std) and convergence 

rate over 20 independent optimization runs.    

The tensile stress of cables for the best optimal design found by the MSA for the nine live 

load cases is shown in Fig. 7 and it can be seen that all the stresses are less than the 

allowable value of 1600 MPa. The vertical deflections of the deck of the best optimal design 

obtained by the MSA resulting from the nine live load cases are plotted in Fig. 8. The 

allowable vertical deflection of the deck is equal to 0.5192 m while the maximum vertical 

deflections of the deck of the best optimal design found by the MSA is 0.5024 m. The 

horizontal deflections of the pylons of the best optimal design obtained by the MSA are 

plotted in Fig. 9. The allowable horizontal deflection of the pylons is 0.1582 m while the 

maximum horizontal deflection of the pylons of the best optimal design found by the MSA 

is 0.1562 m. These results demonstrate that the tensile stress of the cables constraints, the 

vertical deflection of the deck constraint and the horizontal deflection of the pylons 

constraints are satisfied for the best optimal design obtained by the MSA metaheuristic. 

Moreover, the optimal designs found by PSO, CBO and ECBO metaheuristic algorithms are 

also feasible. 
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Table 1: Results of CSB optimization 

Cable Number 
Cable Cross-Sectional Area (m2) 

GA [13] PSO CBO ECBO MSA 

1 0.0043 0.0023 0.0026 0.0023 0.0025 

2 0.0041 0.0023 0.0022 0.0022 0.0022 

3 0.0038 0.0017 0.0018 0.0018 0.0017 

4 0.0034 0.0016 0.0015 0.0015 0.0014 

5 0.0030 0.0015 0.0014 0.0014 0.0013 

6 0.0026 0.0010 0.0012 0.0013 0.0011 

7 0.0022 0.0015 0.0013 0.0014 0.0014 

8 0.0018 0.0014 0.0015 0.0014 0.0013 

9 0.0014 0.0014 0.0015 0.0015 0.0014 

10 0.0009 0.0014 0.0013 0.0011 0.0014 

11 0.0007 0.0011 0.0012 0.0012 0.0010 

12 0.0009 0.0010 0.0012 0.0013 0.0011 

13 0.0001 0.0011 0.0012 0.0012 0.0011 

14 0.0013 0.0013 0.0011 0.0012 0.0010 

15 0.0015 0.0010 0.0011 0.0011 0.0011 

16 0.0016 0.0016 0.0011 0.0011 0.0010 

17 0.0018 0.0018 0.0013 0.0013 0.0014 

18 0.0019 0.0016 0.0018 0.0018 0.0017 

19 0.0019 0.0017 0.0018 0.0018 0.0017 

20 0.0020 0.0019 0.0018 0.0017 0.0019 

21 0.0020 0.0019 0.0018 0.0017 0.0019 

22 0.0019 0.0017 0.0018 0.0018 0.0017 

23 0.0019 0.0016 0.0018 0.0018 0.0017 

24 0.0018 0.0018 0.0013 0.0013 0.0014 

25 0.0016 0.0016 0.0011 0.0011 0.0010 

26 0.0015 0.0010 0.0011 0.0011 0.0011 

27 0.0013 0.0013 0.0011 0.0012 0.0010 

28 0.0001 0.0011 0.0012 0.0012 0.0011 

29 0.0009 0.0010 0.0012 0.0013 0.0011 

30 0.0007 0.0011 0.0012 0.0012 0.0010 

31 0.0009 0.0014 0.0013 0.0011 0.0014 

32 0.0014 0.0014 0.0015 0.0015 0.0014 

33 0.0018 0.0014 0.0015 0.0014 0.0013 

34 0.0022 0.0015 0.0013 0.0014 0.0014 

35 0.0026 0.0010 0.0012 0.0013 0.0011 

36 0.0030 0.0015 0.0014 0.0014 0.0013 

37 0.0034 0.0016 0.0015 0.0015 0.0014 

38 0.0038 0.0017 0.0018 0.0018 0.0017 

39 0.0041 0.0023 0.0022 0.0022 0.0022 

40 0.0043 0.0023 0.0026 0.0023 0.0025 

Structural analyses 10000 10000 10000 10000 10000 

Weight (KN) 

Best  1339.2 959.24 945.29 932.15 926.52 

Mean - 997.70 993.71 984.52 972.77 

Worst - 1123.6 1061.5 1052.0 1021.0 

std - 38.72 35.62 30.44 25.63 
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Figure 6. Convergence curves of PSO, CBO, ECBO and MSA for their best designs 

 

 
Figure 7. Tensile stress of the cables for the best optimal design found by MSA 
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Figure 8. Vertical deflection of the deck for the best optimal design found by MSA 

 

 
Figure 9. Horizontal deflections of the pylons for the best optimal design found by MSA 

 

 

5. CONCLUSIONS 
 

The current study is devoted to address a challenging optimization problem of cable-stayed 

bridges. The cross-sectional areas of the cables are treated as the design variables of the 

optimization problem. The design constraints include the stay cables stress, the vertical 

deflection of the deck, and the horizontal deflection of the pylons. Because there is a large 

number of design variables, an efficient optimization algorithm should be used to deal with 

this optimization problem. An efficient metaheuristic algorithm namely, momentum search 

algorithm (MSA) is used to solve the optimization problem of cable-stayed bridges. The 

MSA metaheuristic is based on two important physics’ laws: momentum conservation law 

and kinetic energy conservation law. The performance of MSA is compared with that of four 

well-known optimization algorithms including GA, PSO, CBO and ECBO. The optimal 
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weight of the cables found by MSA is 30.82%, 3.41%, 1.99% and 0.61% lighter compared 

to GA, PSO, CBO and ECBO, respectively. The obtained numerical results demonstrate that 

best weight, mean weight, worst weight, standard deviation (std) and convergence rate of the 

MSA are better than those of GA, PSO, CBO and ECBO. 
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