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ABSTRACT  
 

The main aim of this study, is to evaluate the seismic reliability of steel concentrically 

braced frame (SCBF) structures optimally designed in the context of performance-based 

design. The Monte Carlo simulation (MCS) method and neural network (NN) techniques 

were utilized to conduct the reliability analysis of the optimally designed SCBFs. Multi-

layer perceptron (MLP) trained by back propagation technique was used to evaluate the 

required structural responses and then the total exceedence probability associated with the 

seismic performance levels was estimated by the MCS method. Three numerical examples 

of 5-, 10-, and 15-story SCBFs with fixed and optimal topology of braces are presented and 

their probability of failure was evaluated considering the resistance characteristics and the 

seismic loading of the structures. The numerical results indicate that the SCBFs with optimal 

topology of braces were more reliable than those with fixed topology of braces.   
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1. INTRODUCTION 
 

One of the main concerns in structural engineering is the design of cost-efficient structures 

with acceptable performance against earthquakes. On the other hand, performance-based 

design (PBD) [1] is a modern seismic design procedures for the rehabilitation of existing 

structures and the seismic design of new ones. So, structural optimization methodologies 

have been developed in the last decades and structural performance-based design 

optimization (PBDO) has become a topic of growing interest [2-10] in the field of structural 
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engineering. As can be seen from literature, metaheuristics are the best choice to deal with 

the PBDO problems, because they are powerful algorithms for exploring and exploiting the 

design space and are also simple for computer implementation.  

The intrinsic random nature of material properties and actions must be actually 

considered in the design process of structures and the probability of failure must be 

computed from the joint probability distribution of the random variables associated with the 

action and resistance. Theory and methods for structural reliability are actually useful tools 

for evaluating the safety of complex structures. Recent developments allow anticipating that 

their application will gradually increase, even in the case of common structures [11]. Monte 

Carlo Simulation (MCS) is a simulation method for reliability analysis. The main concept of 

simulation techniques is to simulate a probabilistic phenomenon numerically and then 

observe the frequency of a certain event in that phenomenon [12]. These simulation 

techniques are easy to implement, but in the case of small failure probabilities, the number 

of simulations required is extremely large which greatly increases the computational cost of 

these simulation techniques. Thus, the MCS method can be applied to many practical 

problems that allows direct consideration of any type of probability distribution for random 

variables. This method is able to calculate the probability of failure with the desired 

precision. However, its computational burden is high because the MCS requires a large 

number of structural analyses [13]. In the current work, the reliability theory and PBD 

approach were simultaneously utilized to evaluate the reliability index of optimally designed 

steel concentrically braced frame (SCBF) structures for earthquake loadings. In order to 

address the uncertainties in material properties and seismic actions, structural nonlinear 

responses were required to perform reliability analysis using the MCS method. As a result, 

the computational cost required for this process will be expensive. One of the best 

candidates for reducing the computational burden of the reliability analysis is neural network 

(NN) techniques. In this study, feed-forward multi-layer perceptron (MLP) trained by back 

propagation technique [14] in MATLAB [15] platform was used to evaluate the required 

structural responses.  

Reliability analysis of the 5-, 10-, and 15-story SCBFs with fixed and optimal topology 

of braces designed in the framework of PBD was conducted in the present study. For each 

optimally designed structure a NN model is trained to provide the data required to perform 

the reliability analysis using the MCS method. The obtained numerical results demonstrate 

that the reliability index of the SCBFs with optimal topology of braces were higher 

compared to the SCBFs with fixed topology of braces.     

 

 

2. OPTIMAL SEISMIC DESIGN OF SCBF STRUCTURES 
 

In the present work, immediate occupancy (IO), life safety (LS) and collapse prevention 

(CP) are considered as the performance levels and three hazard levels with 50%, 10% and 

2% probability of exceedance in 50 year period (50%/50y, 10%/50y, and 2%/50y) are 

adopted according to the hazard model of Standard No. 2800 [16] as shown in Fig. 1. The 

nonlinear static pushover analysis is performed to quantify seismic induced nonlinear 

response of structures according to [1]. In this method the structure is pushed with a specific 

distribution of the lateral loads until the target displacement is reached. OpenSees [17] is 
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utilized to conduct the pushover analysis. In addition, to capture the buckling behavior of 

braces, uniaxial phenomenological model [18] was used.  

 

 
Figure 1. Acceleration response spectra of hazard levels 

 

The aim of the PBDO process is to minimize the weight of the structure under some 

constraints. For a SCBF consisting of ne members that are collected in ng design groups, the 

discrete optimization problem can be formulated as follows: 

 

Minimize:  
 


ng

i

nm

j

jii LAXw
1 1

)(   (1) 

Subject to: 0)( Xgk
, nck ,,2,1   (2) 

 

where X is vector of design variables including cross-section of elements and placement of 

braces in the frame; w represents the weight of the frame, ρi and Ai are weight of unit volume 

and cross-sectional area of the ith group section, respectively; nm is the number of elements 

collected in the ith group; Lj is the length of the jth element in the ith group; gk(X) is the kth 

behavioral constraint. 

Three types of constraints including geometric, strenght and PBD constraints were 

checked during the optimization process. The geometric constraints must be satisfied in 

framing joints to meet the practical demands of construction. The strength constraints of 

structural elements were checked for gravity loads to perform serviceability checks based on 

AISC-LRFD [19] design code. The PBD constraints including inter-story drift, plastic 

rotation of columns and plastic deformation of braces were cheched according to FEMA-356 

[1] and ASCE 41-13 [20] to ensure the desired seismic performance of the structures.   

Over the recent years, many efficient metaheuristic algorithms have been proposed to 

deal with the complex structural optimization problems such as colliding bodies 

optimization (CBO) [21], enhanced colliding bodies optimization (ECBO) [22], and center 

of mass optimization (CMO) [10]. The CMO was proposed based on the concept of center 

of mass in physics. This metaheuristic algorithm is an efficient and powerfull tool to tackle 

the PBDO problems of structures. 
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3. RELIABILITY ANALYSIS 
 

Obviously, modelling uncertainty plays an important role in evaluating the seismic 

reliability of structures. There are numerous sources of uncertainties which may seriously 

affect the structural seismic performance. Among these sources, material properties and 

seismic loads are involved as the uncertain variables in the current work. The structural 

nonlinear analysis should be performed to evaluate the probabilistic structural response. 

Then, limit state functions associated with each performance level should be calculated 

using the probabilistic structural response. As a result, the non-performance probability 

related to each performance level can be evaluated using the MCS method. Overall, the 

MCS is a simple and powerful tool for solving a wide range of reliability problems. 

However, using it to assess very low probabilities of failure requires a large number of 

structural analyses to be conducted that can be excessively time consuming. In order to 

address this critical issue, an efficient NN model in conjunction with the MCS is used in this 

study to significantly reduce the computational cost of seismic reliability assessment of 

structures. the employed NN model is feed-forward multi-layer perceptron (FFMLP) trained 

by back propagation technique using neural network toolbox of MATLAB. The following 

subsections briefly describe the mathematical background of MCS and FFMLP.   

 
3.1 Monte Carlo simulation 

To solve reliability problems, random variables must be defined. For the SCBFs optimally 

designed in the framework of PBD, the random variables are considered as follows: 

 

𝑈 = {𝐸 𝑓𝑦 𝑆𝑎
𝐼𝑂 𝑆𝑎

𝐿𝑆 𝑆𝑎
𝐶𝑃}

T

 

(3) 

 

where U is vector of random variables; 𝐸 and 𝑓𝑦 are respectively Young’s modulus and yield 

strength of steel materials considered for the uniaxial phenomenological model; 𝑆𝑎
𝐼𝑂; 𝑆𝑎

𝐿𝑆 and 

𝑆𝑎
𝐶𝑃 are spectral acceleration of the hazard levels of the optimally designed SCBFs.  

A reliability problem is normally formulated using a limit state function. Limit state 

function for each performance level is defined using capacity and demand as follows: 

 

𝐺𝑖(𝑈) = 𝑅𝐿
𝑖 − 𝑅𝑖(𝑈) , 𝑖 = 𝐼𝑂; 𝐿𝑆; 𝐶𝑃

 

(4) 

 

where G is a limit state function; 𝑅𝐿 is the limiting value for a seismic response R(Z).  

In the reliability analysis performed in this work, the maximum inter-story drift ratios at 

the IO, LS and CP performance levels are selected as the structural seismic responses, and 

subsequently, the considered limit state functions for the performance levels are as follows: 

 

𝐺𝐼𝑂(𝑈) = 0.005 − 𝛿𝑚𝑎𝑥
𝐼𝑂 (𝑈)

 

(5) 

𝐺𝐿𝑆(𝑈) = 0.015 − 𝛿𝑚𝑎𝑥
𝐿𝑆 (𝑈)

 

(6) 

𝐺𝐶𝑃(𝑈) = 0.020 − 𝛿𝑚𝑎𝑥
𝐶𝑃 (𝑈)

 

(7) 
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where the limiting values for the maximum inter-story drift ratios at the IO, LS and CP 

performance levels are taken as 0.005, 0.015, and 0.020 [1], respectively; 𝛿𝑚𝑎𝑥
𝐼𝑂 , 𝛿𝑚𝑎𝑥

𝐿𝑆 , and 

𝛿𝑚𝑎𝑥
𝐶𝑃  are the maximum inter-story drift ratios at the performance levels, respectively.   

The non-performance probability, 𝑃𝑓, is defined as a function of the limit state functions 

corresponding to a given performance level. Estimation of the non-performance probability 

in the time-invariant domain requires the evaluation of the multiple integral over the failure 

domain, G(U) < 0, as follows [23]:  

 

𝑃𝑓 = ∬ … ∫  𝐹𝑈(𝑈) 𝑑𝑈 

 

(8) 

  

where  𝐹𝑈(𝑈) is the joint probability density function of U.  

As in the present work, only one limit state function is defined for each performance 

level, the total exceedence probability, 𝑃𝑓𝐸, for each performance level is defined as follows: 

 

𝑃𝐹𝐸
𝑖 = 𝑃(𝐺𝑖(𝑈) ≤ 0) , 𝑖 = 𝐼𝑂; 𝐿𝑆; 𝐶𝑃

 

(9) 

 

Calculating the total exceedence probability, 𝑃𝐹𝐸
𝑖 , requires the integration of a multi-

normal distribution function [23]. However, this integral can be estimated by the MCS 

method. In this study, the MCS method is utilized simultaneously for all limit state functions 

of the performance levels. The MCS method allows the determination of an estimate of 𝑃𝐹𝐸
𝑖 , 

given by: 

 

𝑃𝐹𝐸
𝑖 =

1

𝑛
∑ 𝐴𝑗

𝑖(𝑈)𝑛
𝑗=1  , 𝑖 = 𝐼𝑂; 𝐿𝑆; 𝐶𝑃

 

(10) 

𝐴𝑗
𝑖 = {

1.0 𝑖𝑓 𝐺𝑗
𝑖(𝑈) ≤ 0

0.0 𝑖𝑓 𝐺𝑗
𝑖(𝑈) > 0

 , 𝑖 = 𝐼𝑂; 𝐿𝑆; 𝐶𝑃

 

(11) 

 

where n is the number of independent samples generated based on the probability 

distribution for each random variable for the MCS implementation. 

    Implementation of the MCS requires a large number of structural nonlinear analyses. The 

MCS is a time consuming process because of high computational cost of pushover analysis. 

To reduce the computational burden of MCS, a FFMLP NN model is trained to predict the 

required structural seismic responses. 

 
3.2 FFMLP NN model 

The FFMLP model is trained with back propagation (BP) technique, which is a gradient 

descent optimization algorithm that adjusts the weights in the steepest descent direction 

according to the following equation: 

 

𝑊𝑡+1 = 𝑊𝑡 − 𝜂𝛻𝑡

 

(12) 

 

where 𝑊𝑡 , 𝛻𝑡  and 𝜂𝑡  are the weight matrix, the current gradient matrix learning rate, 
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respectively at iteration t. 
the BP technique uses Levenberg-Marquardt (LM) [14] algorithm to approach second-

order training speed without having to compute the Hessian matrix. In the LM algorithm the 

weights updating is achieved as follows: 

 

𝑊𝑡+1 = 𝑊𝑡 − [𝐽𝑇𝐽 + 𝛼𝐼]−1𝐽𝑇𝐸𝑟

 

(13) 

  

where J is the Jacobian matrix that contains first derivatives of the network errors with 

respect to the weights; Er is a vector of network errors; α is a correction factor; and I is 

identity matrix.  

One of the techniques used to prevent overfitting is regularization [14] in which the 

performance function of the network is modified by adding a term that consists of the mean 

of the sum of squares of the network weights as: 

 

𝑚𝑠𝑒𝑟 = 𝛾 (
1

𝑚
∑ (𝐸𝑟𝑘)2

𝑚

𝑘=1
) +

1 − 𝛾

𝑛𝑤
∑ (𝑊𝑡,𝑙)

2𝑛𝑤

𝑙=1
 

(14) 

 

where 𝛾 and 𝑛𝑤 are the performance ratio and number of network weights, respectively; m 

is the size of 𝐸𝑟𝑘. 

The input vector of the FFMLP model trained in the current study is the vector of random 

variables U and the components of its output vector are predicted maximum inter-story drifts 

at performance levels. The total number of 15 hidden layer neurons with tangent sigmoid 

transfer function are considered and the architecture of the network is shown in Fig. 2.   

 

 
Figure 2. Architecture of the FFMLP model 

 

To evaluate the prediction accuracy of the trained FFMLP NN model in training and 

testing modes, mean absolute percentage error (MAPE) between the 𝑛𝑠 number of actual 

(𝛿𝑚𝑎𝑥
𝑖 ) and predicted (𝛿𝑝

𝑖 ) responses is computed as follows:  

 

𝐴𝑃𝐸𝑗
𝑖 = |

𝛿𝑚𝑎𝑥
𝑖 −𝛿𝑝

𝑖

𝛿𝑚𝑎𝑥
𝑖 |

𝑗

 ,  𝑖 = 𝐼𝑂; 𝐿𝑆; 𝐶𝑃  ,  𝑗 = 1,2, … , 𝑛𝑠

 

(15) 

𝑀𝐴𝑃𝐸𝑖 =
100

𝑛𝑠
∑ 𝐴𝑃𝐸𝑗

𝑖𝑛𝑠
𝑗=1  ,  𝑖 = 𝐼𝑂; 𝐿𝑆; 𝐶𝑃 
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4. NUMERICAL RESULTS 
 

Three illustrative examples including 5-, 10-, and 15-story SCBFs with fixed and optimal 

topology of braces are selected from [24] in which these structures have been optimally 

designed in the context of PBD. The SCBFs with discrete fixed topology are denoted by 

DFT the structures with discrete optimal topology are denoted by DOT. The MCS-based 

reliability analysis of the optimally designed SCBFs is carried out using the probability 

density function, mean value and standard deviation of random parameter given in Table 1.  

 
Table 1: Properties of random variables 

Random Variable Probability density function Mean value Standard deviation 

𝐸 Normal 200 GPa 20.0 GPa 

𝑓𝑦 Normal 345 MPa 34.5 MPa 

𝑆𝑎
𝐼𝑂 Lognormal 𝑆𝑎

𝐼𝑂 0.15 × 𝑆𝑎
𝐼𝑂 

𝑆𝑎
𝐿𝑆 Lognormal 𝑆𝑎

𝐿𝑆 0.15 × 𝑆𝑎
𝐿𝑆 

𝑆𝑎
𝐶𝑃 Lognormal 𝑆𝑎

𝐶𝑃 0.15 × 𝑆𝑎
𝐶𝑃 

 
4.1 First example: 5-storey SCBF 

 

All the 5-story SCBFs, optimally designed in [24], in DFT and DOT design groups are 

shown in Fig. 3.  

 

 

Figure 3. Optimally designed 5-story SCBFs 
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For each optimally designed 5-story SCBF, a FFMLP neural network is trained to predict 

the required seismic responses. A total number of 10,000 samples are generated and 8,000 

and 2,000 samples are used for training and testing, respectively. MAPE values in training 

and testing modes are given in Table 2 for all the structures. These results show that the 

trained NN models have acceptable prediction accuracy.   

 

Table 2: MAPE of different FFMLP NNs trained for 5-story SCBF 

SCBF 
𝛿𝑝

𝐼𝑂 
 

𝛿𝑝
𝐿𝑆 

 
𝛿𝑝

𝐶𝑃 

Training Testing Training Testing Training Testing 

DFT1 9.23 9.53  3.33 3.02  2.19 2.61 

DFT2 9.24 9.49  3.32 3.30  2.14 2.15 

DOT1 10.91 10.53  3.84 3.81  2.64 2.65 

DOT2 10.94 11.36  3.90 4.04  2.72 2.62 

DOT3 9.91 9.71  3.55 3.49  2.92 2.79 

DOT4 11.75 11.09  4.08 4.18  3.06 3.05 

DOT5 10.39 10.49  3.45 3.47  2.02 2.08 

DOT6 10.38 10.04  3.38 3.34  2.40 2.46 

DOT7 7.33 11.68  2.74 3.11  2.13 1.92 

DOT8 9.48 9.37  3.28 3.15  2.17 2.24 

DOT9 11.5 11.05  3.52 3.37  2.25 2.29 

DOT10 10.86 10.60  3.63 3.75  2.35 2.33 

 

Reliability analysis of all the optimally designed 5-story SCBF is performed by using 

MCS method and the trained FFMLP NN models considering n=106 samples. The values of 

𝑃𝐹𝐸 (%) obtained for all the 5-story SCBFs at performance levels are compared in Fig. 4. 

 

 
Figure 4. 𝑃𝐹𝐸 (%) for optimally designed 5-story SCBFs at IO, LS and CP performance levels 
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The results of reliability assessment show that the highest safety against uncertainties 

belongs to the DOT1 structure which its 𝑃𝐹𝐸 is 0.0075%.  

 
4.2 Second example: 10-storey SCBF 

 

All the 10-story SCBFs, optimally designed in [24], in DFT and DOT design groups are 

shown in Fig. 5.  

 

 
Figure 5. Optimally designed 10-story SCBFs 
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A FFMLP neural network is trained to predict the seismic responses of each optimally 

designed 10-story SCBF. A total of 10,000 samples are produced and 8,000 and 2,000 

samples are used for training and testing, respectively. Table 3 reports the MAPE values in 

training and testing modes for all the structures indicating that the trained NN models have 

acceptable prediction accuracy.   

 

Table 3: MAPE of different FFMLP NNs trained for 10-story SCBF 

SCBF 
𝛿𝑝

𝐼𝑂 
 

𝛿𝑝
𝐿𝑆 

 
𝛿𝑝

𝐶𝑃 

Training Testing Training Testing Training Testing 

DFT1 4.63 4.76  4.90 4.84  7.56 7.44 

DFT2 6.67 6.62  3.33 3.33  6.57 6.82 

DOT1 7.29 7.42  4.13 4.29  7.26 7.92 

DOT2 7.66 7.62  3.59 3.56  5.56 5.63 

DOT3 8.73 8.16  3.48 3.38  3.18 3.19 

DOT4 9.39 9.19  3.52 4.06  3.81 3.98 

DOT5 8.04 7.83  3.26 3.14  2.95 2.91 

DOT6 8.58 8.44  3.42 3.35  3.77 3.45 

DOT7 6.54 6.24  4.17 3.60  7.91 7.42 

DOT8 8.07 8.05  3.36 3.38  3.39 3.42 

DOT9 8.91 8.67  3.73 3.75  3.98 3.76 

DOT10 9.28 9.15  3.86 4.25  4.50 4.87 

 

Reliability analysis of all the optimally designed 10-story SCBF is performed by using 

MCS method and the trained FFMLP NN models considering n=106 samples. The values of 

𝑃𝐹𝐸 (%) obtained for all the 10-story SCBFs at performance levels are compared in Fig. 6. 

 

 
Figure 6. 𝑃𝐹𝐸 (%) for optimally designed 10-story SCBFs at IO, LS and CP performance levels 
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The results of reliability assessment show that the highest safety against uncertainties 

belongs to the DOT2 structure which its 𝑃𝐹𝐸 is 7.07%.  

 
4.3 Third example: 15-storey SCBF 

All the 15-story SCBFs, optimally designed in [24], in DFT and DOT design groups are 

shown in Fig. 7.  

 

 
Figure 7. Optimally designed 15-story SCBFs 
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FFMLP neural network is trained for each structure. A total of 10,000 samples are produced 

and 8,000 and 2,000 samples are used for training and testing, respectively. For all the 

structures, the MAPE values in training and testing modes are given in Table 4. As seen, the 

prediction accuracy of the trained NN models is acceptable.   

 

Table 4: MAPE of different FFMLP NNs trained for 15-story SCBF 

SCBF 
𝛿𝑝

𝐼𝑂 
 

𝛿𝑝
𝐿𝑆 

 
𝛿𝑝

𝐶𝑃 

Training Testing Training Testing Training Testing 

DFT1 5.08 5.07  3.90 3.97  8.40 7.94 

DFT2 3.01 3.12  3.41 3.58  5.43 4.83 

DOT1 5.59 3.61  4.72 3.09  6.45 3.50 

DOT2 5.22 5.13  3.39 3.64  7.61 7.95 

DOT3 4.95 4.74  3.65 3.27  8.60 8.26 

DOT4 5.38 5.41  4.35 4.11  4.46 3.92 

DOT5 6.62 6.44  5.65 5.03  8.43 9.69 

DOT6 6.33 5.95  4.94 3.87  11.73 10.64 

DOT7 5.61 5.47  4.65 4.78  10.87 10.86 

DOT8 7.01 6.69  2.57 2.46  3.65 3.69 

DOT9 4.61 4.56  2.70 2.59  4.16 4.22 

DOT10 8.41 7.58  4.96 4.81  8.62 9.02 

 

Reliability analysis of all the optimally designed 15-story SCBF is performed by using 

MCS method and the trained FFMLP NN models considering n=106 samples. The values of 

𝑃𝐹𝐸 (%) obtained for all the 15-story SCBFs at performance levels are compared in Fig. 8. 

 

 
Figure 8. 𝑃𝐹𝐸 (%) for optimally designed 15-story SCBFs at IO, LS and CP performance levels 
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belongs to the DOT6 structure which its 𝑃𝐹𝐸 is 13.66%.  

 

 

5. CONCLUSIONS 
 

Reliability analysis of optimally designed SCBF structures was conducted in the present 

study. For this purpose, a FFMLP NN incorporated MCS method was proposed. Three 

numerical examples of 5-, 10- and 15-story SCBFs were selected from [24] where 12 

optimal designs have been obtained for each design example in the PBD framework. A total 

of 36 FFMLP NN model were trained in the current study for predicting the seismic 

responses of the optimally designed SCBFs in the framework of MCS. To perform the 

reliability analysis, limit state functions were defined on the maximum inter-story drift ratios 

at the IO, LS and CP performance levels. The main findings of this study were summarized 

as follows:   

 The results of the reliability analyses demonstrate that the maximum value of 𝑃𝐹𝐸 

for 5-, 10- and 15-story SCBFs in DOT design group is 2.63%, 14.13% and 

38.58%, respectively.  

 𝑃𝐹𝐸 for 5-, 10- and 15-story optimally designed SCBFs is depicted in Fig. 9. It 

can be concluded that the seismic reliability of 15-story optimally designed 

SCBFs is questionable.  

 Some SCBFs with optimal topology of braces are more reliable than those with 

fixed topology of braces.  

 The minimum values of 𝑃𝐹𝐸  which show the safest structures against 

uncertainties are 0.0075%, 7.07% and 13.66% for 5-, 10- and 15-story SCBFs, 

respectively. The safest 5-, 10- and 15-story optimally designed SCBFs are 

shown in Fig. 10.  

 

 
Figure 9. 𝑃𝐹𝐸 (%) for optimally designed 5-, 10- and 15-story SCBFs 
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Figure 9. The safest optimally designed 5-, 10- and 15-story SCBFs 
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