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ABSTRACT

The real-world applications addressing the nonlinear functions of multiple variables could
be implicitly assessed through structural reliability analysis. This study establishes an
efficient algorithm for resolving highly nonlinear structural reliability problems. To this end,
first a numerical nonlinear optimization algorithm with a new simple filter is defined to
locate and estimate the most probable point in the standard normal space and the subsequent
reliability index with a fast convergence rate. The problem is solved by using a modified
trust-region sequential quadratic programming approach that evaluates step direction and
tunes step size through a linearized procedure. Then, the probability expectation method is
implemented to eliminate the linearization error. The new applications of the proposed
method could overcome high nonlinearity of the limit state function and improve the
accuracy of the final result, in good agreement with the Monte Carlo sampling results. The
proposed algorithm robustness is comparatively shown in various numerical benchmark
examples via well-established classes of the first-order reliability methods. The results
demonstrate the successive performance of the proposed method in capturing an accurate
reliability index with higher convergence rate and competitive effectiveness compared with
the other first-order methods.
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1. INTRODUCTION

Multifold integrations with high computational costs are required for accurately determining
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the probability of failure in reliability analysis [1-3]. Alternative integration methods
include sampling methods, specifically Monte Carlo Sampling (MCS), where thousands of
simulations are needed to determine the probability of failure [4-6]. The First-Order
Reliability Method (FORM) has been developed to overcome the computational cost in
recent decades. FORM is a fundamental reliability analysis method recommended by the
international Joint Committee of Structural Safety (JCSS) for calculating reliability based
design optimization [7-9]. FORM investigates standard normal space to find the Most
Probable Point (MPP) or design point. MPP is a point on the limit state surface with a
minimum distance from the origin [10,11], which is also called reliability index. Rackwitz
and Fiessler further modified Hasofer and Lind’s method [12] by considering non-normal
random variables [13]. The method is known as HLRF, one of the first versions of FORM.
If the limit state surface is flat, HLRF immediately converges. However, if it is highly
nonlinear in the standard normal space, HLRF may encounter unexpected errors such as
truncation, bifurcation, periodic oscillation, and chaotic behavior. Zhang and Kiureghian
considered the appropriate choice of the step size with merit function monitoring [14]. In
other words, using the Armijo rule, the researchers optimized the step size to develop their
improved HLRF as iHLRF. The Stability Transformation Method (STM) is an algorithm
driven by the chaos control theory introduced by Yang to handle the non-convergence issue
of HLRF [15]. Roudak et al. proposed the adaptive chaos control to reduce the number of
iterations in STM [16]. Meng et al. further proposed the directional stability transformation
method (DSTM) to improve the stability of HLRF [17]. Additionally, Gong and Yi
employed a Finite Step Length (FSL) parameter, another approach to compute failure
probability in the direction of gradient vector of limit state function to estimate the reliability
index [18]. Keshtegar introduced two advanced versions of FSL that involve the conjugate
search direction and adaptive finite-step length as CFSL and AFSL [19,20]. There are some
methods based on metaheuristic algorithms which implement different procedure close to
sampling method [21,22].

Numerical nonlinear optimization algorithm is another approach to finding design points
in the structural reliability problem. Well-known instances in this regard include Gradient
Projection (GP), Augmented Lagrangian Method (ALM), and Sequential Quadratic
Programming (SQP) [23-26]. SQP, a popular robust optimization method, is a gradient-
based method to solve inequality and equality constraint problems. Indeed, the initial idea of
employing the first-order reliability method was triggered by the SQP algorithm.

In optimization problems with many variables, SQP is coupled with the trust-region
method to facilitate the convergence required for coming up with the final solution. This
successful combination of the trust-region and sequential quadratic programming is known
as the trust-region sequential quadratic programming (trust-region SQP) which uses the
second and first derivatives of the objective function and constraint, respectively [27-29].
Trust-region SQP has already been applied to a number of pure optimization problems;
however, its application to reliability-based engineering optimization is limited. The
aerodynamic wing geometry optimization presented by Joongki et al. is one of the successful
implementations of the trust-region SQP is in the reliability analysis [30]. The inequality
type of trust-region SQP is the algorithm the researchers used to control the feasible domains
of problem constraints as they function properly for addressing large-scale problems.
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This study intends to propose the equality constraint type of trust-region SQP with a
simple filter for reliability analysis that is proper for non-large-scale problems with highly
nonlinearity limit state function and the problems with single minimum point, not multiple
design points. In other words, structural reliability problem consists of a simple objective
function and nonlinear constraint. Accordingly, the constraint of the reliability problem is
the major part of the optimization problem. On the other hand, the merit function which is
used in the main version of the trust-region SQP, equipped with second-order correction of
the final result, does not significantly improve the accuracy and robustness of structural
reliability problems. Therefore, replacing the old filter with a new simple one eliminates
some berries to the fast convergence of the algorithm. However, simple and efficient
techniques are also elaborated to improve the accuracy of the proposed algorithm.
Consequently, the proposed combination with applied changes leads to the desired results.
The rest of the article is structured as follow: Section 2 reveals the theoretical details of the
target method for ensuring reliability analysis. A brief review of the probability expectation
method is provided in Section 3. The proposed method is then evaluated in comparison with
other studies concentrating on a set of benchmark examples with different properties in
Section 4. It is followed by discussion in Section 5 and conclusion in Section 6.

2. TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING

A reliability problem can be considered a nonlinear equality constrained optimization
problem which is shown in the Eq. (1) [31].

min f(x)=05]x 0
subject to  G(x)=0

where f is the objective function; G is the equality constraint or limit state function; and x
represents the decision variables in optimization field or vector of all random variables (xi)
in the standard normal space in the reliability of structure field. The objective function f and
the equality constraint G are supposed to represent continuous second-order nonlinear
differentiable functions. Eqg. (2) presents the Lagrangian function corresponding to the
optimization problem of Eq. (1).

L(x,2)=f(x)+A'G(x) (2)

where A is the Lagrangian coefficient. Trust-region SQP is one of the most robustness
methods for solving these equality-constrained optimization problems. In this regard, it is
necessary to define the trust-region SQP type of the optimization problem by modifying Eqg.
(1) as Eqg. (3) included the quadratic objective function, linear constraint function, trust-
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region constraint.

min Vi (%) d, +=d"Bd,
2 ©)
subjectto  G(x,)+VG(x,) d, =0 and ||d,| <A,

where Vf (x,) is the gradient vector of objective function respect to x,; d, is the step direction

vector; A is the current trust-region radius; and the matrix Bk represents Hessian for the
Lagrangian equation of Eq. (2), which can be calculated by approximation methods such as
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [32]. The optimization problem in Eq.
(3) can be decomposed to two sub-problems. The first one is a normal sub-problem as
expressed by Eq. (4).

{min HG(xk)+VG(xk) d, @

subjectto ||d, || < ¢A,

where £ is a constant between 0 and 1 with a recommended value of 0.8 [31]. Denote the
solution to Eq. (4) by dx. When the solution of Eq. (4) is achieved, the residual vector, ry, is
obtained, rn=G(x)+ VG(x)"dn. The vector dn in Eq. (4) is the normal part of the step
direction vector obtained by solving the normal sub-problem. The dogleg method is an
approximate solution to the optimization problem Eq. (4) [33].

The second stage is to solve the tangential sub-problem that is shown in Eq. (5).

T kT

subjectto VG(x,)'d, =0 and ||d, | <AZ ~|d, |

The projected conjugate gradient (PCG), suitable for solving the equality constrained
problems (EQP) [34], is one choice to solve the optimization sub-problem of Eq. (5). Denote
the solution to Eq. (5) by dz, which is the horizontal part of the step direction vector.
Accordingly, solving the normal and tangential sub-problems enables step direction, dk, to
be updated by Eq. (6).

min (Vf (x)+B.d,) d, +%dTBd o

d, =d, +d, (6)

All details of the computational requirements to estimate the step direction can be found
in Scipy package of python programing [35] in the equality constraint optimization section.
The main version of trust-region SQP method used a non- differentiable merit function to
qualify the step direction and update the trust region in each step that required doing
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complicated calculations.

This study considers the merit function expressed as Eq. (7) known as the L1 merit
function in the literature. In other word, the Armijo rule is replaced by modified calculation
in each step.

¢(Xk’c)= f(xk)+C‘G(Xk)‘ (7)

The gradient of the merit function in Eq. (8) is used to control the reduction of the merit
function in iterations.

V(%) =V (%) +c|[VG(x,) (8)

The merit function is controlled by inequality in Eq. (9) to determine the appropriate step
size and update the trust region.

¢(xk+1,c)—¢(xk,c)Sa.sm.(Vgé(xk,c)T dk) 9)

where « is a positive value equal to 0.5, and the parameter c is calculated by Eq. (10).

¢ =y (%[ /[VG(x)])+7 (10)

where y=2 and #=10 are positive values, and the parameter sy is calculated by Eq. (11).

s, =b¥ (11)
where b is a constant in the range of [0, 1], which is usually considered 0.5, and the
parameter k shows the current iteration for determining the coefficient sm. In the first step,
this coefficient is considered equal to unity.

If Eq. (9) is stablished, smis accepted and the new trust radius can be increased to 7x||dy||.
This value is the enlargement radius used in the main version of the trust-region SQP that is
properly approximated. Otherwise, this coefficient is reduced in each iteration by adding a
unit to k up to the maximum number of predetermined iterations. Then, this coefficient is
multiplied to trust radius and the calculations required for determining the step direction are
repeated to obtain the convergence. In contrast to the traditional methods that perform the
correction on the step size, this method applied the correction to the trust radius. Table 1
illustrates the full version of the algorithm as discussed in this section.
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Table 1: Member groups and corresponding allowable stresses for 25-bar truss

Choose a value for the parameters 8 € (0, 1) and & € (0, 1) and select stopping tolerance &q and
choose an initial value for xo and Ao and set k=0.
While k < Kmax:
Step 1: Compute Lagrange multiplier using BFGS method
Step 2: Compute the normal step dy by the dogleg procedure
Step 3: Compute the normal step dy by the PCG procedure
Step 4: Compute the total step d = dy + dr
Step 5: Check the merit function
If reduction is obtained: set Xi+1 = X + d
Else: update A« by Armijo rule and go to step 1
Step 6: If |[Vf(x,)+AVG(X,) [I< &oi: break the loop

Else:setk=k+1

Compared to the original version, these changes aim to reduce the effect of the trust
radius and the step direction obtained by SQP sub-problems. The second order correction,
complicated trust radius updating, and reduction ratio of merit function are the instances
excluded from the proposed method. Since the searched-based reliability analysis methods
estimate the design point by the linearization of the limit state function, these changes have
no undesirable effect on the final results and conversely lead to fast convergence.

3. PROBABILITY EXPECTATION

Recently, Rashki [36] presented a methodology based on methodic doubt to improve the
accuracy of reliability analysis method that expresses a mathematically exact failure
probability as Eq. (12). In another word, this method is a combination of the searched-based
method and MCS with limited required samples.

P =P +¢ (12)

where P is the exact probability failure, P is the result of reliability analysis method as
inaccurate failure probability, and x is the estimation error. The error term can be accurately
estimated (x =0), overestimated (x <0), or underestimated (x >0) in different conditions. Eq.
(12) could be expressed as Eq, (13) using expectation rules.

E(P,)=E(P)+E(£)=E(P, )+4, (13)

where mg is the mean values of the error term. If the error estimator is unbiased, the term
E(P¥) provides an accurate failure probability. Briefly, if the mean value of the error term is
zero, the expectation of the failure probability obtained by the searched-based methods can
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be estimated by the Eq. (14).

E(P)=E(0(8)-2(8)) (14)

where by and b are the limit state function distances of each MCS sample from the mean.
To find the solution of the Eq. (14), two problems need to be solved. The first is a simple
optimization problem shown in Eq. (15).

{min X, —c.a|

subject to G(x,)=0 (15)

where c; is the answer and a is the importance vector obtained by a searched-based method.
It is the distance between the current position of a sample xx and a point on the limit state
surface (G=0). This distance is parallel to the line linked the origin to the design point
obtained by the searched-based method in the standard normal space.

The second problem is a root-finding problem that intends to find the distance from
modified position of the sample on the limit state surface to the line that intersects the origin
and is parallel to the linearization of the limit state function at the design point obtained by
searched-based method. This procedure is done for all MCS samples to find the new
reliability indexes. Then, the mean is estimated as modified reliability index which is more
accurate than the one estimated by the searched-based method. The root-finding problem is
Eqg. (16) which needs to be solved for ¢, parameter.

X, +(c +¢,)a=0 (16)

The above-mentioned procedure is a simple one that can modify the accuracy of the final
results. If this method fails to improve the accuracy, the alternative choice could be the
Importance sampling that used the design point of the searched-based to generate new
samples. The computational effort required for the Importance sampling is more compared
to the probability expectation method, but sometimes it is necessary to implement it to
overcome the time-consuming restrictions imposed by the Crude Monte Carlo simulation.

4. NUMERICAL SIMULATION

In this section, the numerical examples are investigated in the literature to evaluate the
efficiency and performance of the proposed method. These examples include some
challenging issues such as different nonlinearity types of limit state functions and complex
numerical combinations of random variables. In order to simplify the process, the proposed
method or trust-region SQP is denoted by TRSQP herein.

For each example, the origin coordinate of the standard normal space is selected as the
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initial point for different analysis algorithms. The result of the proposed method is compared
to two states of art algorithms developed to overcome the high nonlinearity of the limit state
function including DSTM and CFSL.

The setup of the DSTM and CFSL methods are the same as demonstrated in the literature
[37,38], where the control factors are specified as 0.1 for DSTM, and the step length and
adjusting coefficient of the CFSL method set 50 and 1.5, respectively. The same
convergence criteria, i.e., [|[Vf(x,)+AVG(x,) || are applied to all methods. The reliability index

of the Monte Carlo simulation (MCS) computed by 1x10° samples is employed to qualify
the accuracy of the methods.

In addition, the examples presented in this article can be solved in Bl software which is a
computer program for reliability analysis that is developed by the authors and can be
downloaded from the (www.betaindexsoftware.com) and different examples can be modeled
accordingly.

4.1 Example 1

The first example has a highly nonlinear quartic polynomial limit state function with two
standard normal random variables as Eq. (17), which is extracted from the previous studies
[37,39].

G(X)=X,~1.7X, +1L5(X, +1.7X, )’ +5 (17

The convergence histories of DSTM, CFSL, and TRSQP are shown in Fig. 1. Two
methods (see Fig. 1) represent unstable reliability index though the behaviors differ. DSTM
swings between two incorrect points which can be seen in the magnifier part of Fig. 1. CFSL
shows the wrong convergence history and results in increasing the value of reliability index
after some iterations. TRSQP represents the appropriate performance and can find the design
point. The coordinate of the design point (-2.4408, 1.5264) that leads to reliability index is
2.8787. This value is the best result that can be expected from the linearization of the limit
state function, where the minimum distance of the origin to the linear approximation of the
limit state function is 2.8787. This problem could be solved by other methods such as iIHLRF
with 2852 function evaluation [37] and STM method with 302 function evaluations [37].

The next step is to improve the accuracy of the results. Fig. 2 shows the probability
expectation procedure implemented to reduce the error of linearization. This problem
consists of two directions. It can be employed in the random samples in probability
expectation model. However, this study applied the Gaussian-Hermite method [40] with 9
points in each direction of standard normal space to generate initial samples, which is shown
by the red circle in the Fig. 2. Then, the samples must be moved to the limit state function
along the importance vector direction achieved by the TRSQP method. This movement is
shown by the blue circle in the Fig. 2. The next step is to compute the error of each sample
with respect to reliability index obtained by the TRSQP. The yellow line in Fig. 2 is the
expanded line estimated by linearization of the limit state function at the design point. The
light blue lines that link the samples on the limit state function to the linearized limit state
function depicted the error of each sample. Finally, the improved result that applies the
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probability expectation (3.34) is in good agreement with MCS that resulted in the reliability
index of 3.339.
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Figure 1. Iteration history for Example 1
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Figure 2. Sampling procedure to improve the accuracy of TRSQP (Example 1)
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Table 2: Results of various methods (Example 1)

Method i Ps Iterations G-Evaluations
DSTM

CFSL

TRSQP 2.878 0.002001 10 10

TRSQP-PE 3.340 0.000418 10+18 10+18

MCS 3.339 0.000420 10°

Table 2 summarizes the final results of the method. TRSQP relates to the proposed
method without probability expectation, but TRSQP-PE is the combination of the
aforementioned proposed method and probability expectation method. The robust
performance of the proposed method that could handle the nonlinearity of the limit state
function and improve the accuracy of the final result along with low computational cost is
depicted.

4.2 Example 2

A combination of exponential and logarithmic random variables is shown in Eq. (18)
[18,38,41].

G(X)= In(e“xi’XZ)+ g* e (18)

Both random variables are standard normal random variables. Fig. 3 shows the iteration
history of three methods with magnified view of the initial steps. The high nonlinearity of
the limit state functions leads to fail convergence for DSTM and CFSL. DSTM oscillates
between two wrong points and cannot resolve the problem by reliance on a stable solution.
Although CFSL achieves the stable reliability index, this result is wrong and inaccurate even
in the linearization phase. Without probability expectation, TRSQP acts as a fast convergent
method.

Some methods such as the ones proposed by Roudak et al. [42], Gong and Yi [18], and
Gong et al. [43] could potentially solve this problem. These methods handle the nonlinearity
of the limit state function, but the computational efforts for applying these methods are not
minimum. For better investigation, check the abovementioned references. Accordingly, it
could be concluded that TRSQP is more robust than other methods which are deployed
based on the first-order estimation.
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The next step is to investigate the accuracy of the results. Similar to the Example 1, this
example is a two-dimension case and the probability expectation could be implemented to
modify the final results of the TRSQP. This time, fifteen points of Gaussian-Hermite method
are implemented to find the error of linearization. Fig. 4 shows the position of the initial
samples in each direction by the red circles. Then, the projections of these samples on the
limit state function, along the importance vector of TRSQP method, are obtained as
illustrated by the blue circles. Finally, the error of linearization is computed by the process
mentioned in Section 3. The reliability index with error analysis (2.7) that is very close to

the MCS output.
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Figure 4. Sampling procedure to improve the accuracy of TRSQP (Example 2)
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Tables 3 shows the results of the reliability index and the probability of failure in the last
iteration. The results of TRSQP show that this method can overcome the high nonlinearity
of the limit state function.

Table 3: Results of various methods (Example 2)

Method B Pt Iterations G-Evaluations
DSTM

CFSL 1.796 0.036247 100 100

TRSQP 2.299 0.010738 7 7

TRSQP-PE 2.700 0.003466 7+30 7+30

MCS 2.745 0.003025 10°

This achievement is associated with an optimum computational cost that could be proven
by comparing other methods in the literature. However, the accuracy of the final result needs
further research, which is addressed in TRSQP-PE that has yielded significant result with
only 30 samples.

4.3 Example 3

The limit state function with noise term is investigated in this Example [44]. Both random
variables are the normal random variables with means of 1.5 and 2.5, respectively, and
standard deviation of 1.0. The limit state function is shown in Eq. (19).

G(X)=(X12+42)(§X2_1)—sin(%j—2 (19)

Iteration history and the zoomed in view of initial iterations are shown in Fig. 5. Similar
to the previous example, DSTM fails to converge and swing back and forth between three
points. On the other hand, CFSL deviates from the convergence path and encounters the
numerical stability issues. TRSQP searches the domain and reports the reliability index of
1.185 that is assumed to be the best solution in the linearization producer. However, there is
a significant different between MCS reliability index 1.861 and TRSQP.

It is not a weakness of the TRSQP because it searches linearized space to find the
shortest distance between origin and limit state surface and successfully locates the design
point (0.44097, 1.10007) which can be seen in Fig. 6. The error relates to high nonlinearity
of the limit state function which includes noise term. If simple probability expectation is
implemented, no progress is made in error improvement because the limit state function
experiences sever changes around the design point and linearized procedure of probability
expectation cannot help. Then, this time, Importance sampling is applied to estimate the
accuracy reliability index. Fig. 6 shows the Importance sampling procedures, where the
design point is chosen as the central sample and the other one hundred samples are
generated with a standard deviation of 0.2.
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Figure 5. Iteration history for Example 3
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Figure 6. Sampling procedure to improve the accuracy of TRSQP (Example 3)
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TRSQP performs the best with 5 steps and the corresponding reliability index is the best
answer that can be expected from a first-order method. The combination of TRSQP and
Importance sampling, TRSQP-IS, leads to a proper output which is in good agreement with
MCS. Table 4 shows the results of the methods including iteration number, number of
function evaluation, reliability index, and failure probability.

Table 4: Results of various methods for Example 3

Method p Ps Iterations G-Evaluations
DSTM
CFSL
TRSQP 1.185 0.11797 5 5
TRSQP-1S 1.840 0.03179 5+100 5+100
MCS 1.861 0.03133 10°
4.4 Example 4

Two-degree-of-freedom primary and secondary dynamic system with eight random
variables are investigated as shown in Fig. 7.
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Figure 7. Primary secondary system (Example 4)
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Table 5. Probability Distribution of Random Variable (Example 4)

Description Variable  Distribution  Mean Standard deviation
The primary mass mp Lognormal 1 0.1
The secondary mass ms Lognormal 0.01 0.001
The primary spring stiffness Ko Lognormal 1 0.2
The secondary spring stiffness ks Lognormal 0.01 0.002
The primary damping ratio & Lognormal 0.05 0.02
The secondary damping ratio & Lognormal 0.02 0.01
The force capacity of the 2" spring Fs Lognormal 15 1.5
The intensity of the white noise So Lognormal 100 10

Table 5 shows the statistical properties. The variables are the masses mp and ms, spring
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stiffnesses kp and ks, damping ratios & and &, the force capacity of secondary spring Fs, and
the intensity of a white-noise base excitation of the system So. The subscripts p and s are the
signs of primary and secondary oscillators, respectively. The limit state function of this
example is defined by Eq. (20).

1
G(X)=F—kP(E[X,])? (20)
where P is the peak factor equal to 3. Parameter E can be expressed as Eq. (21).

E[X]- e x(épwp+§si)s)wp (21)
A,07 | &£ (42 +67 )+ e 4¢,0;

where y=ms/mj is the mass ratio, mp = (kp/mp)®° and ax = (ks/ms)°° define natural frequencies
and damping ratios, respectively. wa = (ap +s)/2 represents the average frequency. & =
(& +&)/2 specifies damping ratio and 6 = (@ —ax)/wa is the tuning parameter. The
convergence histories of DSTM, CFSL, and TRSQP are shown in Fig. 8 with magnifier
view of the initial steps. These three methods (see Fig. 8) represent stable reliability index
though the behaviors are different. DSTM encounters some problems in convergence near
the design point and CFSL illustrates the poor choice of step direction leading to non-
uniform oscillation before convergence. TRSQP overcomes the weakness of the two
mentioned method. In other words, proper step direction and fast convergence around the
design point are the advantage of the TRSQP.
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Figure 8. Iteration history for Example 4
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Reliability analysis results for DSTM, CFSL, TRSQP, TRSQP-IS; and MCS with 10°
samples are shown in Table 6. Similar to the previous problems, TRSQP successfully
obtained the reliability index within a few iterations. DSTM and CFSL are ranked as the
next ones with 27 and 54 iterations. The corresponding b= 2.12 is the best answer that can
be expected from a first-order method. It is worth mentioning that if the Importance
sampling method is applied to other methods, the same result could be obtained because this
part of analysis does not need any prior information except for design point coordinates.

Table 6: Results of various methods (Example 4)

Method B Ps Iterations G-Evaluations
DSTM 2.1231 0.01687 27 27
CFSL 2.1231 0.01687 54 54

TRSQP 2.1230 0.01687 15 15

TRSQP-IS 2.7300 0.01687 15+2000 15+2000
MCS 2.7360 0.00310 10°
5. DISCUSSION

In the previous section, the performance of the proposed method, which is an algorithm
based on the trust-region sequential quadratic programming with new merit function (filter),
namely TRSQP, was investigated by concentrating on four examples. These examples
involved explicit limit state functions with different nonlinearity. The results of other
reliability methods, including DSTM and CFSL which are state-of-art methods in the first-
order category were shown for comparison. Furthermore, the response of the sampling
method was estimated. First-order reliability methods are generally based on the steepest
descent direction, where the priority is to reach the limit state surface. TRSQP uses a
combination of dogleg and PCG to obtain a more appropriate step direction vector to
continue iterations that address not only approaching the limit state surface, but also
minimizing the optimization objective function.

In these examples, accuracy, robustness, and efficiency of the algorithms can be
compared. Achieving the final stable result in first step, which is the linearized of limit state
function, indicated the robustness of methods. The number of iterations and function
evaluations are considered as the criteria of efficiency. The accuracy of each method can be
investigated by checking the final result. The robustness and efficiency of the TRSQP is
depicted in the examples, but the accuracy is a more challenging issue. Then, the
combination of the TRSQP and a simple probability expectation or Importance sampling
were applied to overcome the accuracy issue of the analysis. According to these definitions,
the proposed method is superior to other first-order methods in all three items.

As shown in the tables, the reliability indexes obtained from the proposed method are
close to the literature that demonstrates the robustness of the TRSQP. The minimum
required steps and function evaluations of TRSQP to achieve the design point indicates the
fast convergence that is the sign of efficiency. It is the most significantly competitive feature
of the proposed method observed in Examples 1 to 4. The readers can test the proposed
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algorithm and other state-of-the-art methods in Bl software understand the fast convergence
of the proposed method compared to other in case of resolving challenging problems.

6. CONCLUSION

The first-order iterative algorithms are extensively employed to estimate the failure
probability and design point in the reliability analysis in the linearized space. Due to the

nonlinearity of the limit state surface, FORM-based algorithms fail to converge.

This paper proposes a reliability analysis method on the basis of the nonlinear
optimization method with simple filter. The proposed method employs the appropriate tools
to deal with the high nonlinearity challenges in case of resolving a reliability problem.
TRSQP replaces the initial reliability problem with two optimization sub-problems that are
easier to solve. Then, the dogleg and projected conjugate gradient methods are used to
compute a step direction vector, which is different from the step direction of FORM-based
methods. Subsequently, the step size is computed using a simplified merit function control
and the first duty of the searched-based method to ensure the design point is done.

Through the application and test of several numerical and practical engineering
examples in the literature, it could be concluded that TRSQP is a robust and efficient
algorithm that could be used to resolve reliability problems. However, certain simple
methods such as probability expectation method can be implemented to improve the
accuracy of the algorithm such as MCS.
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