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ABSTRACT

In most practical cases, structural design variables are linked to a discrete list of sections for
optimal design. Cardinality of such a discrete search space is governed by the number of
alternatives for each member group. The present work offers an adaptive strategy to detect
more efficient alternatives and set aside redundant ones during optimization. In this regard,
the difference between the lower and the upper bounds on such variables is gradually
reduced by a procedure that adapts history of the selected alternatives in previous iterations.
The propsed strategy is implemented on a hybrid paritcle swarm optimizer and imperialist
competitive algorithm. The former is a basic swarm intelligent method while the later
utilizes subpopulations in its search. Spatial and large-scale structures in various shapes are
treated showing successive performance improvement. Variation of a diversity index and
resulting band size are traced and discussed to declare behavior merits of the proposed
adaptive band strategy.
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1. INTRODUCTION

Several real-world applications deal with optimal design under engineering constraints [1].
Structural optimization particularly by minimizing its material consumption has been an
active field of research since early 1900’s [2—4]. The problem has already been extended to
various types of structures in presence of their specific constraints. They include sizing
design of frame and truss structures [5,6], geometry assessment and topology optimization
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of structures under static or dynamic constraints [7,8]. Metaheuristic algorithms are popular
tools to solve such optimization problems as they utilize clear concepts and gradient-free
operators to overpass local optima toward global optimum [9].

Spatial structures are considered practical solutions to cover large spans. Majority of
them consist of axial members pin-jointed to each other in modular manner and some can be
modeled and efficiently analyzed using the concepts of symmetry. Large number of
structural members/nodes subjected to stress/deflection limits, is a practical challenge for
their sizing optimization [10,11]. Many these models fall in the category of large-scale
structures [12]. In order to evaluate behavior constraints for every design alternative, the
whole structural model should be analyzed that exerts computational burden to the search
process [13]. The more cardinality, the less efficiency and accuracy is expected in finding
global optimum [14]. Particularly, the number of available cross-sections, assignable to each
member group, governs cardinality of the search space in such a discrete optimization.

In the sizing design problem, there is a direct relation between section areas of the
structural members and resulting total weight: by increasing the member area the objective
function is expected to be increased. Thus, it may be helpful to sort available sections in
ascending order of their areas and classify the corresponding search space as an orderable
one [15].

A number of investigators have applied the cross-section ordering in their optimization
procedure for structural sizing design. A general framework is offered in [15] that employs
some fuzzy membership functions and the trial update strategy from ant colony algorithms
[16]. It updates and utilizes an ordered matrix of section indices based on good experiences
during the search, utilizing a fuzzy approach. Adaptive Dimensional Search [17] is a
population-based heuristic that employs evolutionary strategies together with a parameter to
control exploration-exploitation balance due to real-time changes on the best experience
during the search. The idea is based on sensitivity of the penalized objective function on
sizing variables.

As the structural constraints in the penalized objective function should be evaluated by
numerical analysis; this type of problem is most suited to zero-order methods such as meta-
heuristic algorithms. The present study concerns Particle Swarm Optimization, PSO [18]
and Imperialist Competitive Algorithm, ICA [19] as two well-studied methods in this
category. The former is a basis of swarm intelligent algorithms while the latter applies its
particular method of generating mixing and collapsing subpopulations. A hybrid variant of
ICA and PSO is utilized with less control parameters than both. Then, the proposed variable-
band strategy is applied on such an enhanced optimization framework to evaluate its
performance improvement in sizing design of spatial structures.

2. STRUCTURAL OPTIMIZATION WITH DISCRETE SIZING VARIABLES

During sizing optimization of a structure, its member areas are updated by selecting from a
discrete list of available sections. Suppose that such a list for every g member group,

includes S, sections, sorted in ascending order of their areas. The optimization problem can
thus be formulated as:
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L, and A stand for the length and area of the i™ member in the g™ group (with n, members),
respectively. pis the material density. The structural constraints on the j'" member stress
and the k™" nodal displacement are denoted by g7 (X) and ¢ (X), respectively. DR, stands

for the corresponding nodal Displacement Ratio over its prescribed limit. In case of applying
Allowable Stress Design; SR; denotes the ratio of the resulted stress in any j™ element over
its allowable value.

For every g™ group, the lower and upper bounds on section indices are initiated by the
integer numbers: qu =land x;’ =S, - Using an exterior penalty approach, such a formulation

is transformed to unconstrained form in order to maximize the corresponding fitness as:

Maximize Fit(X)=-w(X)x (L+K,.> max(g,,0)) (2)

Ith

where g,(X) stands for the I behavior constraint and K, stands for the penalty factor.

3. PARTICLE SWARM OPTIMIZER

Since Particle Swarm Optimizer was introduced in 1995 as the pioneering method on swarm
intelligent computation, it has applied to several engineering problems [20]. In its standard
form, PSO can partially simulate movement strategies in a bird flock. In every new instant
of time (iteration of the algorithm), an artificial bird (a particle) can move in its previous
direction (inertial action) or toward the best of its own experience (cognitive action) or
follow the best position already found by the entire swarm (social action). All these actions
are integrated in PSO via the following relations to update velocity and position of the
corresponding particle:

X=XVt ®3)

Vit =6+ rand xc, x (R~ X{) + rand xc, x (B~ X,) @
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At the iteration t, X! and V' stand for position and velocity of the i particle, respectively.
P'is its best experience while B' denotes the global best position. The corresponding scale
factors for the inertial, cognitive and social terms are represented byc,,c,,c,. The

function rand adds extra stochastic feature to the algorithm by generating random numbers
within [0, 1]. PSO initiates with a population of randomly positioned particles and then for a
prescribed number N, iterates in a loop that updates their positions due to Eq. (3) and Eq. (4).

Then, the updated B'is announced as the optimum.

4. IMPERIALIST COMPETITIVE ALGORITHM

Imperialist Competitive Algorithm, is a population-based metaheuristic method inspired by
interaction of some artificial empires [19]. According to ICA terminology, every solution
vector in the population is called a country. The countries within each empire (sub-
population) are called colonies except their fittest one that is distinguished as the imperialist.
The power (or fitness) of a country is an inverse measure of its normalized cost. Every
imperialist absorbs its colonies during movements within the corresponding empire;
meanwhile if one colony gets better than its imperialist they will exchange their role. Once
total power of each empire is calculated by fitness of the imperialist plus the scaled mean
fitness of its colonies, the empires compete to take possession of colonies from each other.
In another word, colonies migrate from weaker empires to the stronger ones. Consequently,
weaker empires may become empty and collapse while stronger ones enlarge. The process
continues until the strongest imperialist hopefully conquers all the others and just one
empire remains. Once the termination criterion is satisfied, the strongest imperialist among
the entire population is announced as the optimal design. A simple description of the
algorithm can be briefed via the following steps:

Step 1. Initiate N,,, empires with randomly positioned colonies. Evaluate fitness of all N,
members of the entire population. Distinguish the fittest vector within every e empire as its
imperialist; denoted by X{ .
Step 2. For each empire e do:
- Move every ¢ colony of the empire toward the imperialist by Eq. (5) using a
parameter f:

X =h(XS+(Bxrand —1)x (X:, — X&) (5)

¢,new imp —

- Evaluate fitness of the new vector and if X: ,is fitter than the current X, replace

them. The function h(.) fixes new design vector within its bounds; i.e. X* ~ X" .
- Update the imperialist as the fittest member of the empire.

Step 3. Perform competition between the empires:
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- Compute total fitness of the empire by Eq. (6) using the prescribed factor & :

imp

TF, = Fit(X;,,) + & mean( Fit(X;)) (6)

- Compute power of the empire by:
p-_TR-Q (7)

e N,

2. (TF.-Q)

e=1

where Q is the maximum total fitness over the empires.
- Migrate the weakest colony (the least fit) from the empire with the least power to the
strongest empire that has the most likelihood (power) to possess it.
Step 4. Collapse any empty empire if there exists.
Step 5. Check termination criterion: If the number of iterations has not reached its
prescribed limit: N, then repeat the main loop from Step 2; otherwise announce the

strongest imperialist as the optimum. As an alternative termination criterion; a maximum
number of fitness evaluations can be set in such a process to NFE__, . In the present study

extra control parameters are set to N, =0.25N,, S =4and £=0.5.

5. ADAPTIVE-BAND STRATEGY IN THE PROPOSED ALGORITHM

Many population-based meta-heuristics, can show a decreasing trend of diversity vs iteration
so that at final iterations, the velocity vectors approach zero; that is when no further
violation about the already-found optimum design is intended. In such a process, the
population vectors concentrate more and more on the optimum solution up to final
convergence.

Fig.1l illustrates history of some variables’ bounds in a sample sizing optimization,
provided that a sorted list of structural sections is used. Although traces are not targeted at
the same point for different variables, they show a common trend: the bandwidth between
lower to upper bounds on section indices, decreases as the iteration number increases. It is
also observed that fluctuation of each design variables about its optimum (target) value
approaches zero near final iterations.

The phenomenon is particularly useful on orderable search spaces such as those in
discrete structural sizing problem [15]. Applying sorted discrete list of sections, the range of
variation at every sizing variable hopefully reduces with time (iteration), with respect to the
initial lower-to-upper bounds.

In the other hand, lack of search refinement and computational efficiency are practical
challenges in sizing design of large-scale structures with many members and several
behavior constraints. It motivates the need for efficient solutions in such a design
optimization.
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Figure 1. Variation of band size and bounds on design variables during a sizing optimization

Let’s call the current range of lower-to-upper bounds for each sizing variable as its Band
Size, BS. Regarding the aforementioned phenomenon, a strategy is developed for adaptive
control of BS, based on tracing positions of every search agent in some previous iterations.
It offers adaptive reduction of BS by the following subroutine:

- Record trace of the section indices that have been chosen during optimization; form
the iteration, t-k+1, up to the current iteration, t.
- For every " sizing design variable do:

o ldentify the minimum and maximum chosen indices as ‘qu andtx;J :
respectively.
o Apply new lower and upper bounds in Eq. (1) by substituting them instead of
using original x; andx;, respectively.
The above subroutine can be inserted before/after a walking step in the main algorithm. It
applies an Adaptive Band Size, ABS to reduce cardinality of the search space and improve

the search refinement. Consequently, the proposed Adaptive Band hybrid Swarm and
Imperialist Competition Algorithm, ABSICA, is revealed via the following steps:
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Step 1. Initiatek and o <— . Initiate and evaluate the population, then divide it into
N, empires.
Step 2. For every empire e do
- For every c¢"" colony of the empire do
o Generate candidate solution by Eqg. (5), exchange with the current if fitter.
- Update the imperialist of the empire
Step 3. Competition between the empires
- Compute total fitness of the empire by Eq. (6)
- Compute power of the empire by Eq. (7)
- Migrate the weakest colony to the strongest empire
Step 4. Collapse any empty empire
Step 5. If the number of fitness evaluations has just reached o x NFE,, then:

- Update lower/upper bounds on design variables by ABS subroutine.
- Apply the new bounds in the fixing function h(.)
- For every i"™ individual in the population:

o Move the individual to the new position x""*" by:

X" =h(X] +rand x(P' — X;)+rand x (B' — X)) (8)

o The term P' is the previous best and B'denotes the global best particle as
described in PSO by Eqg. (4).

o Construct a random design vector x**** within the updated bounds

t,ABS
i

position of the individual; otherwise remain x; unchanged.

o Move the individual toward x;™° provided that it is fitter than the current

X[ =h(X! +rand x (X;{"* = X})) )

o Update a by replacing a < 1.5«

Step 6. Set back to the original variable bounds for the fixing function h(.)

Step 7. If the termination criterion is not satisfied go back to Step 2; otherwise announce the
optimum.

ABS strategy can be applied to the main algorithm using two parameters; kanda .The
integer k is the number of recent iterations covered in tracing history of variable bounds. By
the rater, frequency of ABS activation is controlled during the search to prevent the
algorithm from premature convergence. Since Eq. (8) is extracted from cognitive and social
terms of Eq. (4), it hybridizes such PSO operators with ICA.
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6. NUMERICAL SIMULATION

The proposed algorithms are applied on a number of spatial truss structures with various
shapes. Each example is solved via independent trial runs. For the sake of fair comparison,
the initial population is kept identical between Enhanced Imperialist Competition Algorithm,
EICA [21] and ABSICA in each run. Diversity tracing is a tool for studying behavior of
algorithms [22-25]. A Diversity Index, DI is utilized as:

SD,
DI :m%an(xU —1) (10)

q Xq

Dl is defined as the normalized standard deviation averaged over the design variables
using the original variable bounds x('; and x;g’. The term SD, stands for the standard

deviation between individuals of the population in the g™ design variable. In the present
work, parameters of adaptive variable band sizing are applied as k=10anda =0.1. A
penalty factor of 10 is also used to avoid infeasible designs. Termination criterion in each
example is set by total NFE .

Allowable Stress Design is applied in the present study for sizing design of pin-jointed
structures due to AISC-ASD89 [26]; in which the stress limits are calculated as:

Gallowabl? — 06 Fy

compression

127°E Ay
23,12 'C,
allowable __ c
Gcompression - 5 §/1_ ) 3 ) p) (11)
3 8C, 8C, s C.

_ 27%E
C.= /Fy

where E denotes elasticity modulus and F, stands for the yield stress. The slenderness

factor of the corresponding member is denoted by A . The stress constraints in this method
is controlled by non-dimensional stress ratios as SR in the Eq. (1).

6.1 Design of 928-bar barrel-dome

Optimal design of a 928-bar barrel-dome structure is studied in this example. The problem
was first introduced by the authors in continuous form [27]; however, it is treated here using
discrete list of available sections as given in Table 1. This dome is a practical example of
roof system for a sports’ complex. A concentrated gravity load of 11 kN is applied at every
node in the barrel part while each node in dome-part undergoes a vertical load of 5.5 kN.
The structural members are distingushed in 7 groups by different ink in Fig. 2. The stress
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constraint is controlled due to AISC-ASD89 provisions while the nodal displacement limit
in each orthogonal direction is set to 0.05 m. The population size is taken 10.

Table 1. Available list of structural pipe sections

Area Gyration
No.  Name (cm?) ra}c;ius (cm)
1 ST Y 1.613000 0.662432
2 EST Y 2.064512 0.635000
3 ST Ya 2.129028 0.846582
4 EST Ya 2.774188 0.818896
5 ST 1 3.161284 1.066038
6 EST 1 4.129024 1.034542
7 ST 1%, 4.322572 1.371346
8 ST 1%  5.161280 1.582166
9 EST 1% 5.677408 1.331214
10 EST 1%  6.903212 2.003806
11 ST 2 6.903212 1.535430
12 EST 2 9.548368 1.945132
13 ST 2% 10.96772 2.416810
14 ST 3 14.38707 2.955798
15 EST 2% 1451610 2.346452
16 DEST 2 17.16126 1.782572
17 ST 3%  17.29028 3.395726
18 EST 3 19.48383 2.882646
19 ST 4 20.45157 3.835908
20 EST 3% 23.74189 3.318002
21 DEST 2%  25.99995 2.143506
22 ST 5 27.74188 4.775454
23 EST 4 28.45156 3.749548
24 DEST 3 35.29025 2.658110
25 ST 6 35.99993 5.700014
26 EST 5 39.41928 4.675124
27 DEST 4 52.25796 3.490976
28 ST 8 54.19344 7.462012
29 EST 6 54.19344 5.577332
30 DEST 5 72.90308 4.379976
31 ST 10 76.77404 9.342628
32 EST 8 82.58048 7.309358
33 ST 12 94.19336 11.10361
34 DEST 6 100.6449 5.236464
35 EST 10 103.8708 9.216898
36 EST 12 123.8707 11.02893
37 DEST 8 137.4191 7.004812
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Figure 2. 928-bar barrel dome

Table 2. Results of sizing design for 928-bar barrel-dome example

Design Variable EICA ABSICA
X1 24 21

X2 13 16

X3 23 24

X4 37 24

X5 18 22

X6 23 18

X7 19 17
Best weight (kg) 79957.6 49723.4
Mean 92990.2 58062.3
SD 18430.1 11793.4
NFE 5000 5000

x10°

-0.4

-06 -

-0.8 1

o~
N

Mean Fitness
N

29 —EICA | |
- —— ABSICA

-2.4

. L L . . L L . .
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NFE

Figure 3. Convergence curves for the mean results of 928-bar design problem
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Figure 4. Convergence curves for the best results of 928-bar design problem

FORMIAN is a specialized software to assess complex architectural forms of space
structures [28]. Appendix A.1 gives the FORMIAN code to genreate topology and geometry
of this example. The lengths of rod members in the groups 1 to 7 are 2.45, 2.45, 2.45, 3.13,
3.97, 2.01 and 2.49 meters, respectively.

Convergence curves over independent trail runs are given in average by Fig. 3 and in the
best run by Fig.4. It is evident that the proposed strategy has led to considerable
convergence improvement by ABSICA vs. EICA.

Quality of the final results and the corresponding statistics can be found in Table 2. EICA
has decreased the structural weight up to 79957.6 kg; however, the best result of ABSICA is
as least as 49723.4 kg. It is while the mean results show about 37% improvement due to the
proposed adaptive band strategy in ABSICA with respect to EICA. Table 2 also declares
superior performance of ABSICA over EICA regarding lower standard deviation.

Fig. 5 reveals band size history in the best optimization run for 7 design groups of the
928-bar design problem. It can be noticed that for most variables, both BS level and its
fluctuations have shown rapid decrease via early iterations. The matter provides reasoning
for higher convergence rate of ABSICA.

40

35 £
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N
o

Band Size
)
S

15

. . N n n ; n n n 1
10 20 30 40 50 60 70 80 90 100
Iteration

Figure 5. BS variation up to iteration 100 for 7 design variables in 928-bar truss design
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Figure 6. Diversity index history vs. iteration for 928-bar truss design

Another issue to study in this example; is the trend of diversity variation in the
optimization process. According to Fig. 6, DI has experienced decreasing from 0.396 to
nearly 0.100 by EICA but it is almost constant for further iterations. However, ABSICA
continues on decreasing DI to approach zero. Such a diversity trace is in agreement with the
history of BS variation in Fig. 5 to confirm higher convergence rate of ABSICA. Taking in
mind that final results of ABSICA are better than EICA, it is concluded that the proposed
strategy has provided better search refinement by such a trend of DI variation.

(a) (b)
Figure 7. Distribution of (a) deformation in meters and (b) stress ratios in the optimal design
of 928-bar truss
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Figure 8. Member stress ratios of the optimal 928-bar truss
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Maximum stress ratio of EICA design is obtained 0.404 over 928 elements while the
displacements ratio over 353 nodes, is at most 0.942. Maximum stress and displacement
ratios by ABSICA design are obtained as 0.539 and 0.998, respectively. The matter shows
feasibility of the final design and activation of the displacement constraint in this example.
Fig. 7 illustrates the deformed shape of the structure versus its unloaded shape. DR values
have approached 1.00 exhibiting activation of the displacement constraint. Fig. 8 shows that
the stress constraint is satisfied falling well below its limit of unity; however, not activated.

6.2 Design of 1512-bar symmetric dome

This example is treated to evaluate performance of the proposed algorithms in sizing design
of a large-scale symmetric dome. Fig. 9 shows a 1512-bar dome truss with 408 nodes having
a central upper ring and a lower ring of support nodes. The truss elements are divided into 9
symmetric groups. Considering 37 sections of Table 1 for each member group, cardinality of

the search space is almost1.3x10™; that introduces a large-scale problem. Every node at
the upper ring undergoes a load of 16 kN in the direction of gravity and 6 kN is vertically
applied at the other free nodes. Material properties and stress constraints are the same as the
previous example. The structure’s geometry and topology are constructed using FORMIAN
code given in Appendix A.2. The member lengths of the nine groups are 3.29, 3.29, 1.3,
2.96, 2.96, 2.11~5.15, 1.54~4.68, 3.31~3.54, and 2.63~3.24 meters, respectively. As can be
realized some sizing groups include a variety of member lengths.

(a) (b)

Figure 9. 1512-bar dome truss: a) Top view, b) Side view

Statistical results for optimal designs of 1512-bar dome by the proposed methods are
given in Table 3. The mean result of ABSICA for such a dome is obtained 27364.7 kg that is
below 29841.4 kg by EICA; however, their best result shows 0.6% difference. Due to lower
standard deviation, ABSICA has better robustness than EICA, in this example. Comparison
of the convergence curves in Fig. 10; shows superiority of ABSICA in the mean results.
According to Fig.11, the 9 design variables in this example, except the variables No.7 and
No.8, exhibit general trend of decreasing BS in early iterations; that corresponds to high
efficiency of ABSICA.
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Table 3. Results of sizing design for 1512-bar dome truss

Design Variable EICA ABSICA
X1 15 21
X2 16 16
X3 35 32
X4 15 11
X5 17 10
X6 9 2
X7 4 12
X8 4 1
X9 1 3
Best weight (kg) 25203.9 25055.8
Mean 29841.4 27364.7
SD 3223.6 1843.4
NFE 5000 5000
%10

-2.5

Mean Fitness

—EICA b
—— ABSICA

L L L L L L . . .
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
NFE

Figure 10. Convergence curves for the mean results of 1512-bar truss design
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Figure 11. BS variation up to iteration 100 for the design variables in 1512-bar truss design
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Such a trend is better studied by tracing DI in Fig. 12. Again, EICA shows nearly
constant diversity after early iterations. It is while ABSICA has lowered such a level of
diversity to provide better search refinement as the search progresses to the final iterations.
However, it has not landed on zero diversity in such a more complex and large-scale
problem. Higher fluctuation of DI trace in ABSICA with respect to EICA is also observed.

T T
——EICA
—— ABSICA | |

10 20 30 40 50 60 70 80 90 100
Iteration

Figure 12. Diversity index history vs. iteration for 1512-bar truss design

Distribution of such deformation among the structural model is given by Fig. 13. The
corresponding DR values are obtained 0.998 by EICA and 1.001 by ABSICA where the
limit on the nodal displacement is taken 0.005 m. It is evident in Fig. 14 for such a design of
the dome-shaped structure that the elements have taken certain SR values between -0.3 and
0.3. Based on AISC-ASD89, the maximum stress ratio has reached 0.235 by ABSICA while
it is obtained 0.217 by EICA. Despite the stress limitation, the displacement constraint is
activated by ABSICA in this example.

(a) (b)

Figure 13. Distribution of (a) deformation and (b) stress ratios in the optimal 1512-bar truss
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Figure 14. Member stress ratios of the optimal 1512-bar truss

(b)
Figure 15. 1104-bar helipad truss: a) 3D view, b) Side view

6.3 Design of 1104-bar helipad structure

Helipad structures have many real-world applications such as in emergency buildings and
hospitals, offshore structures and tall building towers [29]. Here, a steel helipad of Fig. 15 is
considered to illustrate merit of the proposed algorithms in practical design. The problem
has previously been formulated with continuous variables [30]; however in the present work,
the sections are limited to be selected from the discrete list of Table 1. The structure
contains two-layer grids with 1 m distance from each other. Diameter of the bottom layer is
18 m while the external diameter is 21 m. The structural members are embedded to the 9
sizing groups for which the member lengths are 1.50~1.73, 1.10~1.50, 1.50, 1.45~2.40, 1.50,
1.76~2.71, 1.50, 1.50~2.12, and 2.00 meters, accordingly.

In this structure, two load cases are applied to the top layer of the structure at the same
time. The first one is the concentrated vertical load of 350 kgf applied at 4 central nodes and
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the second applies the distributed load of 300 kgf/m? at all nodes of the top layer. The
allowable tensile and compressive stresses are calculated due to the AISC-ASD89. Helipad
has crucial functionality for which only small deformations are allowed. Hence, the
displacements at every degree of freedom (in orthogonal directions) are limited here to 0.005
m; that is less than the span length divided by 240. The algorithms are run by 50 individuals
and 20000 structural analyses in each independent run.

Convergence history of EICA and ABSICA are compared in Fig. 16. It is realized that in
the mean results higher fitness is obtained by applying the proposed adaptive band strategy.
According to Table 4, the best results of structural weight by the two methods are similar.

Fig. 17 reveals that distinct design variables have experienced more different and delayed
trends of BS-decrease with respect to previous examples. The matter addresses the effect of
structural shape and member grouping to resist its particular loading state.

Table 4. Results of sizing design for 1104-bar helipad example
“Design Variable EICA ABSICA

X1 17 16
X2 23 25
X3 28 27
X4 12 12
X5 23 21
X6 1 1
X7 20 19

X8 15 11

X9 34 32
Best weight (kg)  24539.5 24420.9
Mean 24993.4 24745.3
SD 439.7 406.0
NFE 20000 20000

x10*

-2.4

251

26 1
—EICA

27 ——ABSICA| |

-28

29

Mean Fitness

3k

=31

-3.2
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-3.4

012 Oj4 0?6 0.‘8 1‘ 1.‘2 1.‘4 1.‘6 1.‘8 2
NFE x10%
Figure 16. Convergence curves for the mean results of helipad design problem

In this practical example, final fitness improvement with respect to the fittest design in
the initial population, is obtained 29%, showing a considerable merit in minimization of the
construction material cost. DI traces in Fig. 18, better show behavior of the algorithms. It is
observed that at the iterations where ABS subroutine is activated, the optimization process
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experiences sudden diversity drops due to such local search. After that, it returns back to its
general trend until next activation of ABS in the Step 5 of ABSICA.

Fig. 19 gives a picture about distribution of deflection in the best optimal design by
ABSICA. It can be realized due to location of supports, the structural responses are not in a
full cycle symmetry; however, are observed in the mirrored parts about the orthogonal axes.
The center part of helipad undergoes more reactions due to the applied loadings.
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Figure 17. BS variation up to iteration 100 for the design variables in 1104-bar helipad design
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Figure 18. Diversity index history vs. iteration for 1104-bar helipad design
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Figure 19. Distribution of (a) deformation and (b) stress ratios in the optimal 1104-bar truss


http://dx.doi.org/10.22068/ijoce.2023.13.2.547
https://sae.iust.ac.ir/ijoce/article-1-547-fa.html

[ Downloaded from sae.iust.ac.ir on 2025-10-20 ]

[ DOI: 10.22068/ijoce.2023.13.2.547 ]

AN ADAPTIVE-BAND STRATEGY TO ACCELERATE DISCRETE OPTIMIZATION ... 173

According to Fig. 20, most helipad members are in a safe margin with the absolute SR
less than 0.20; and a few members with more SR up to 0.36. This model has experienced
more DR values up to 1.00. It shows capability of the proposed optimization algorithm to
activate at least one type of the behavior constraints.
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Figure 20. Member stress ratios of the optimal 1104-bar helipad truss design

7. CONCLUSION

The present study, has taken merit of orderable design spaces in discrete structural sizing
due to the relation between member cross-section areas and total weight of the model.
According to preliminary tests, it was found that the corresponding upper and lower limits
on each design variable tend to concentrate on the optimal section index after some early
fluctuations. The feature is accelerated via the proposed adaptive band strategy that works
on a sorted section list and utilizes the history of BS variation. ABS has been designed to
frequently tighten the band size for better refinement and again release it in order not to be
trapped in local optima.

A hybrid PSO and ICA that takes advantages from operators of both, was selected to
implement ABS. The proposed method was then applied on a number of space truss
examples with various spatial shapes, to declare performance improvement in comparison
with an enhanced variant of ICA. According to the results, the quality of optimal designs
was improved in ABSICA with respect to the other method that does not apply ABS. In
addition, better activation of constraints in the optimal point by ABSICA confirms its
superior search refinement.

History of DI variation, declares how exploration and exploitation are balanced by the
algorithms. It was observed that EICA stops DI decreasing after some early iterations. In the
other hand, ABSICA enforces DI to decrease and drop into a much smaller level. Such a
phenomenon is in agreement with the BS reduction for different variables; as a result of
applying the adaptive-band strategy.

It is practical to fix the grouping for sizing design of a structure; especially when it is
modular and in a particular spatial form. ABS relies on refinement of the band size for every
variable rather than changing the number of such design variables. In this regard, the
proposed method is an affordable solution for efficiency improvement in sizing design of
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real-world structures with practical list of available sections.
APPENDIX

A.1. FORMIAN code of the 928-bar truss

S=25; (*) Span of barrel vault and the semi-domes (*)
H=12.5; (*) Rise of barrel vault and the semi domes (*)
L=25; (*) Length of barrel vault (*)

m=8; (*) Frequency of the semi-domes (*)

n=8; (*) Frequency along the

length of barrel vault, n must be even (*)

p=3; (*) Number of sectors of each semi-dome (*)
A=2*atan|(2*H/S); (*) Sweep angle (*)
R=S/(2*sin|A); (*) Circumradius (*)
E=rinit(2*m+1,n,1,1)|[1,0,0; 1,0,1]#
rinit(2*m,n-1,1,1)|[1,0,1; 1,1,1]#
lamit(m,n/2)|rinit(m,n/2,1,1)|

[1,1,0; 1,0,1];
B=verad(0,0,90-A)|bc(R,A/m,L/n)|E;
F=bd(R,180/p,A/m)|genit(1,m,1,1,0,1)|

{[1,0,0; 1,0,1], [1,0,0; 1,1,1],

[1,0,1;1,1,1]};

D=pex|rosad(0,0,p,180/p)|F;
Domes=lam(2,-L/2)|D;

Barrel=verat(0,0)|B;

Bard=Barrel#Domes;

use &,vm(2),vt(2),

vh(2*R,2*R,8*R, 0,0,0, 0,0,1);

clear; draw Bard,;

A.2. FORMIAN code of the 1152-bar truss

S=40; (*) Span of top layer (*)

P=10; (*) Gap diameter (*)

D=2; (*) Depth (*)

A=90; (*) Sweep angle (*)

m=24; (*) Frequency of

elements on a ring (*)

n=8; (*) Frequency of elements on a rib (*)
R=S/(2*sin|A); (*) Top radius (*)
Rb=R-D; (*) Bottom radius (*)
G=asin|(P/(2*R)); (*) Gap angle (*)
i=(A-G)/(2*n); (*) increment (*)
T=rinit(m,n+1,2,2*)|[R,0,G; R,2,G]#
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rinit(m,n,2,2*1)|[R,0,G; R,0,G+2*i];
B=rinit(m,n,2,2*i)|[Rb,1,G+i; Rb,3,G+i]#
rinit(m,n-1,2,2*i)|[Rb,1,G+i; Rb,1,G+3*i];
W=rinit(m,n,2,2*i)|lamit(1,G+i)|

[R,0,G; Rb,1,G+i];
Dome=bs(1,360/(2*m),1)|(T#B#W);

use &,vm(2),vt(2),vh(R,R,4*R, 0,0,0, 0,0,1);
clear; draw Dome;
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