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ABSTRACT

In this article, topology optimization of two-dimensional (2D) building frames subjected to
seismic loading is performed using the polygonal finite element method. Artificial ground
motion accelerograms compatible with the design response spectrum of ASCE 7-16 are
generated for the response history dynamic analysis needed in the optimization. The mean
compliance of structure is minimized as a typical objective function under the material
volume fraction constraint. Also, the adjoint method is employed for the sensitivity analysis
evaluated in terms of spatial and time discretization. The ground structures are 2D continua
taking the main structural components (columns and beams) as passive regions (solid) to
render planar frames with additional components. Hence, building frames with different
aspect ratios are considered to assess the usefulness of the additional structural components
when applying the earthquake ground motions. Furthermore, final results are obtained for
different ground motions to investigate the effects of ground motion variability on the
optimized topologies.
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1. INTRODUCTION

Optimal design of structures under earthquake loads is an important and challenging issue in
civil engineering, because providing an effective seismic performance considering the
dynamic properties involved is not an easy problem. Also, this research area is relatively
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young, and is in a progressive state of development for more than two decades [1]. Current
design methods are based on the traditional trial-and-error process guaranteeing structural
safety, but these methods may not necessarily result in optimal designs. Therefore,
numerous investigations on structural optimization have been carried out [1-7]. Topology
optimization aims to optimize material distribution in a computational domain considering
some objective function(s) and constraint(s) [8, 9]. The results of topology optimization can
help engineers to design a lightweight, cheap, and high-performance structure. As deduced
from modern building constructions, there are many inspirations initiated from topology
optimization to find the most effective structural form against various loads in addition to
new architectural forms [10-12]. In this regard, there are some applications of topology
optimization providing conceptual designs for modern structures, such as VVoronoi diagrams
[10].

Many studies have been conducted in the field of topology optimization to develop
effective formulations resolving the inherent numerical issues such as the checkerboard
pattern, mesh dependency, local minima, etc. [9, 13-17]. Apart from numerous studies on
static problems [18, 19], topology optimization has been applied to various dynamic
problems including free and forced vibrations of solids and structures [20-23]. However,
only a few studies on topology optimization directly considered earthquake loading which is
one of the extreme loads sustained by structures [20, 24-26]. Although the structures
subjected to strong ground motions are expected to undergo inelastic behavior, in most
cases, the design procedure assumes linearly elastic behavior of the structure and indirectly
implements the effects of nonlinearity. Therefore, many researchers have used linear
analysis in the topology optimization of structures under seismic excitation [1, 24].

Here, the previous studies on topology optimization of structures considering earthquake
loads are briefly discussed. Hajirasouliha et al. [27] optimized the topology of truss-like
structures for seismic excitation to minimize the structural weight and to meet a state of
uniform deformation. Zakian and Kaveh [26] proposed a topology optimization problem to
identify the important structural parts of shear walls as well as shear wall-frame structures
under both gravity and seismic loads using the equivalent static analysis. They also
investigated the effects of structural tallness, shear wall-frame interaction, and opening. The
Isotropic Material with Penalization (SIMP) approach was used to optimize compliance, and
a penalty function was defined to impose a constraint on the top displacement. Allahdadian
and Boroomand [24] performed topology optimization of a three-story planar frame
subjected to seismic loads to minimize the norm of structural displacements. They employed
the response history analysis using the finite element method with the SIMP approach.
Gomez et al. [28] modeled the stochastic ground excitation as a zero-mean filtered white
noise, and obtained the structural response covariances of 2D building models by solving the
resulting Lyapunov equation. The optimization problem was introduced to minimize the
maximum structural response covariances, and the sensitivities were calculated with a
gradient-based solver. Martina and Deierlein [20] used a frequency-domain approach to
propose a dynamic topology optimization formulation based on modal decompositions, by
which the structural vibration was minimized for a seismic excitation defined as a response
spectrum. Their results indicated that the optimized topology is affected by the earthquake
frequency content.

The three-node and four-node elements are often used in two-dimensional finite element
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models. Nevertheless, a generalized element like the polygonal element with more than four
vertices leads to further developments in mesh generation and the finite element method
[29]. Indeed, polygonal finite elements can provide higher flexibility for the meshing of
complicated geometries (see Figure 1). In this article, topology optimization of building
frames under earthquake ground motion is considered using the polygonal finite element
method. Artificial ground motion accelerograms are generated using the design spectrum of
ASCE 7-16 [30] for the dynamic analysis needed in optimal seismic design. Topology
optimization is carried out to minimize the mean compliance of structure considering the
constraint of material volume fraction. Also, the adjoint method is employed for the
sensitivity analysis. Two building frames with different aspect ratios are selected as the
ground structures to evaluate the effectiveness of various structural parts under earthquake
excitations. Different designs of structural topology corresponding to the generated
accelerograms are obtained to include the effects of ground motion variability.

Figure 1. A mesh of polygonal elements [29].

The remaining part of this article is organized as follows: Section 2 describes the
topology optimization problem, and contains an overview of the applied solution method for
topology optimization of the structure under seismic loading. Section 3 describes the
artificially generated earthquake accelerograms. In Section 4, the results of two examples are
provided. Finally, Section 5 summarizes the concluding remarks.

2. TOPOLOGY OPTIMIZATION FORMULATION

In this section, theoretical aspects of topology optimization in linear elasticity incorporating
the dynamic loading are presented. Also, the design domain and density field utilized in the
formulations of the optimization problem are briefly discussed, as implemented in PolyDyna
[31]. In this study, the PolyDyna with slight modifications is used.

2.1 Problem description
The governing equation of a linearly elastic dynamic problem can be stated as:
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dive+b=pii+Cu, in Q
u=mg, on Ty, (1)
c.n =t, on I'y

where ¢, t, b, U, Uand u show the stress tensor, prescribed boundary tractions, body force
field, acceleration field, velocity field, and displacement field, respectively; C is a damping
factor leading to energy dissipation. Also, n indicates the unit outward normal vector. The
stress tensor is calculated using the linear isotropic elasticity tensor and the infinitesimal
strain tensor, as given by

c=C:g,

£=%(Vu+VuT) )

In the topology optimization, the elasticity tensor depends on a density field which can be
introduced using either the SIMP or Rational Approximation of Material Properties
(RAMP). Furthermore, p denotes the physical density at point x € Q, which is usually

expressed in terms of the density field, that is

p=m, (p)p, (3)

in which p, and m, (p) denote the mass density of solid material and volume interpolation

function corresponding to the volume fraction at point x. The statement in Eq. (1) is valid for
topology optimization of continua with arbitrary objective and constraint functions.
However, in this paper, the objective function is the mean compliance of structure, as given

by

1

f (p,u) :t—j: LNt'udxdt (4)

In addition, in order to impose a limitation on the amount of material, the following
constraint is defined:

(o) =ﬁ f,m, (pix—v <0 ©)

where V' denotes the prescribed total material volume fraction.
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2.2 Discretization

Let z be the vector of design variables, such that z € [0, 1] where N shows the total number
of design variables which is also equal to the total number of polygonal elements used in the
mesh. Hence, the vector of filtered densities is expressed as

y =Pz (6)

in which P is the filter matrix computed by

WIkAk

P ==

7
2 WA, ()
j-1

with A, being the element area; and w, is a weighting coefficient based on the selected

filter kernel.
Furthermore, the time discretization of the governing equation using N time steps leads
to

MU, +Cu, +Ku, =f,, i =0,1..,N, (8)

where M, C, and K are mass, damping, and stiffness matrices, respectively. Also, f, , U, ,
u, , and u, are force, acceleration, velocity, and displacement vectors at the ith time step,
respectively. When considering an earthquake excitation, f, =—Mru? where r is the

influence coefficient vector, and U7’ is the ground acceleration at the ith time step. For a

horizontal earthquake excitation, r = [1, 0, 1, 0, ..., 1, 0]" is considered when using two-
dimensional polygonal elements. Mass and stiffness matrices are evaluated as

M=, (v,)m ©
and
K:irﬁE (v )k, (10)

where the summation refers to the assembly operator. Also, the mass matrix and stiffness
matrix of an element are calculated by
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m, :_‘-QI PoH{H, dx (12)
and

K, :IQ| B, C,B,dx (12)

in which H, and B, indicate the interpolation functions matrix and the strain-displacement
matrix, respectively. Also, C, is the moduli matrix for a linearly elastic material.
The volume and material interpolation functions are obtained as

m, (y,)=¢&+1-&)m, (y,) (13)

and

Me(y,)=¢+A-&)me(y,) (14)

in which € « 1 to avoid instability when y, approaches zero in the limit. Here, the threshold

interpolation function and the RAMP function are used as the volume and material
interpolation functions, respectively [32, 33]. Moreover, the damping matrix is computed
using the Rayleigh approach, as follows:

C=a,M+a, K (15)

in which a,, and a, are two parameters depending on the damping ratios and the natural
frequencies of effective modes.

According to the discretization of both density and displacement fields, the discretized
elastodynamic topology optimization problem is obtained as follows:

Minimize f (z,u,,...,uy )

2 A, (y)

i E—— Y ) j=1...N
SA ‘

let;

suchthat g;(z)= . (16)

with
Mu; +Cu, +Ku, =f,, i=01..,N,
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in which A, is the area of the Ith element, Nc is the number of volume constraints, and ¢

denotes a set of elements constrained by g; . Also, the discrete form of mean dynamic
compliance is stated as

f (z,u,,...,u ZfT (17)

th

It should be noted that the Hilber, Hughes, and Taylor (HHT-«) scheme [34] is used for
the time integration here.

2.3 Sensitivity analysis

In this study, the adjoint method is utilized for sensitivity analysis to prevent the calculation
of expensive derivatives of the state variables. Accordingly, the discretize-then-differentiate
approach is used [31, 35].

The sensitivity of an objective function is expressed as

df _of §hof o 8)
dz, oz, {=ou, oz,

Indeed, in order to prevent the computational efforts needed for calculating the last term
in Eq. (18), the adjoint method is used. Using the HHT-a method for the time discretization,
and after some algebraic operations, the following relation is obtained [31]:

i oE, df avl . df (19)
oz, 82e av,

with

df 1 OR,

dE aE ,Z;‘é (20)
and

df T 6R

dV 8V Z% (21)

i=0

inwhich &7 and R, are the adjoint vector and residual vector at the ith time step, such that

or. K (U +acu) fori =0
' (22)

O, |k [(@-a)(uy +acuy)+a(Uygy +acl )| fori=L..N,
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and

oR. m, (U, +a, U,,) fori =0
= (23)

o, |m, [U,i +a, (A-a)u, +au|(i71))] fori=1,...,N,

where o is a parameter in the HHT-a scheme. For the mean dynamic compliance as the
objective function when considering the earthquake excitation, one can write

of L] o -1
—=0, mru’) 'u;,, —=—Mru’ 24
oE, 6V |leu=o( U a; N, 24

where u, denotes the displacement vector corresponding to element | at the ith time step.

3. ARTIFICIAL EARTHQUAKE ACCELEROGRAMS

In this section, the employed earthquake accelerograms are discussed. The use of artificial
ground motions can reduce the computational cost because the total number of time steps for
an artificial ground motion can usually be less than that of a real ground motion. However,
when the ground motion is compatible with a design spectrum, as an alternative to the real
ground motion, the artificial ground motion can also give desirable results due to its
reasonable frequency content and peak ground acceleration (PGA). In order to consider the
effects of ground motion variability and the effects of using almost the same intensity for
ground motions in the topology optimization problem, three artificial ground motions
compatible with the design spectrum of ASCE 7-16 [30] are generated. The method given in
Ref. [36] is used for synthesized accelerogram generation, and also the quadratic baseline
correction is employed for the accelerograms. In the definition of the design spectrum
illustrated in Figure 2, the site class D and spectral response acceleration parameters
Ss=0.60g and S;=0.32g are assumed.

0.6

0.5

0.4

S, (2

503

0.2

0.1

0

0 ()tS i ITS é 2?5 ; 3i5 4
T (s)
Figure 2. The design response spectrum used for synthesized accelerogram generation.

Also, the long-period transition period and the moment magnitude are taken as T,=8 s
and My=6.5. The generated accelerograms are shown in Figure 3 where the PGA of the first,


http://dx.doi.org/10.22068/ijoce.2023.13.3.554
https://sae.iust.ac.ir/ijoce/article-1-554-fa.html

[ Downloaded from sae.iust.ac.ir on 2025-10-20 ]

[ DOI: 10.22068/ijoce.2023.13.3.554 |

TOPOLOGY OPTIMIZATION OF 2D BUILDING FRAMES UNDER ... 283

second, and third accelerograms are equal to 0.246g, 0.241g, and 0.288g, respectively.
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Figure 3. Artificially generated earthquake ground motions: (a) Accelerogram 1, (b)
Accelerogram 2, and (c) Accelerogram 3.

4. DESIGN EXAMPLES

This section presents two examples of topology optimization for two-dimensional building
frames under artificial ground motions using the response history analysis. The ground
structures are two-dimensional continua (see Figure 4) containing passive regions to render
building frames having additional structural components. These passive regions include the
columns and beams as the main structural components which are not removed from the domain
(passive solid region) during the optimization.

In-plane dimensions of columns and beams are selected as 0.4 m. For all the examples,
the damping ratio is chosen as 0.05, and the volume fraction limit is taken as 0.35. Elasticity
modulus, mass density, and Poisson ratio are assumed to be 35 GPa, 2400 kg/m?, and 0.2,
respectively. In addition, a lumped mass of 5000 kg is assigned to both end nodes of every
beam in the structure. Each generated accelerogram has a duration of 10.06 s, which is
applied to the structure in the horizontal direction, as shown in Figure 4. The time step size
of dynamic analysis is equal to that of the accelerograms, which is 0.01 s.
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Figure 4. The ground structure used in topology optimization under a horizontal earthquake
excitation.

4.1 Low-rise case

The first example is a low-rise building frame. The width and height of the structure are
selected as 4.8 m and 6.6 m, respectively. Damping coefficients are am = 2.0904 and ak =
3.9535x10*, and a mesh of 12,672 elements with unit thickness is used. Also, the filter
radius is assumed as 0.1 m. Results of the topology optimization are illustrated in Figure 5,
demonstrating that using the employed ground motions leads to almost the same designs.
This phenomenon can be due to using the same design spectrum for generating those three
ground motions. Furthermore, the configuration of the required bracings for the first story is
different from that of the second story.

(@) (b) (©)
Figure 5. Optimized topologies obtained for the low-rise case using different earthquake ground
motions: (a) Accelerogram 1, (b) Accelerogram 2, and (c) Accelerogram 3.
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4.2 Mid-rise case

Here, a four-story frame with a width of 4.8 m and a height of 13 m is considered. Damping
coefficients are av=1.1357 and ax=7.2769x10*, and a mesh of 24,960 elements with unit
thickness is used. The filter radius is equal to 0.2 m. The optimized topologies for three
ground motions are illustrated in Figure 6. The optimized designs obtained using
accelerograms 1 and 2 are almost the same, but the design optimized using accelerogram 3 is
slightly different from them in the higher stories because the bracings in higher stories have
larger lengths (located in higher elevations) when using accelerogram 3. Furthermore, size
of the bracing connections formed in the third story in Figure 6(c) is not very similar to the
corresponding sizes in Figures 6(a) and 6(b). Similar to the previous example, the lower
stories require significantly stronger bracings than the higher stories.

(a) (b) (©)
Figure 6. Optimized topologies obtained for the mid-rise case using different earthquake ground
motions: (a) Accelerogram 1, (b) Accelerogram 2, and (c) Accelerogram 3.

5. CONCLUSOINS

In this paper, topology optimization of planar continua under seismic excitation was performed
using the linear response history analysis. In order to improve the applicability of optimized
solutions, building frames corresponding to the planar continua were generated by defining the
passive solid regions. The polygonal finite element method was utilized for spatial
discretization, due to its suitable performance in modeling complex geometries. Also, the HHT-
a scheme was used as the time integration, and artificial ground motion accelerograms were
generated according to the ASCE 7-16 design spectrum for the dynamic analysis.

Three ground motions were employed in order to evaluate the effects of ground motion
variability on the optimized topologies obtained by minimizing the mean dynamic
compliance under a constraint on the material volume fraction. The final results provide
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desirable insight into the topological properties of the structure in both architectural and
structural aspects. Also, the optimized topologies illustrate that the differences between the
results obtained using the employed accelerograms are not significant when considering the
ground motions compatible with the design spectrum. Of course, the differences are greater
for the mid-rise structure. Since the dynamic properties of low-rise and mid-rise structures
are not identical, one can obviously expect different optimized topologies as demonstrated
by the examples. However, the obtained results similarly show that low elevations of the
structure need remarkably stronger bracings than its high elevations.
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