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ABSTRACT

In this paper, three recently improved metaheuristic algorithms are utilized for the optimum
design of the frame structures using the force method. These algorithms include enhanced
colliding bodies optimization (ECBO), improved shuffled Jaya algorithm (IS-Jaya), and
Vibrating particles system - statistical regeneration mechanism algorithm (VPS-SRM). The
structures considered in this study have a lower degree of statical indeterminacy (DSI) than
their degree of kinematical indeterminacy (DKI). Therefore, the force method is the most
suitable analysis method for these structures. The robustness and performance of these
methods are evaluated by the three design examples named 1-bay 10-story steel frame, 3-
bay 15-story steel frame, and 3-bay 24-story steel frame.
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1. INTRODUCTION

Optimization has grown in popularity as a research topic over the last four decades.
Optimization is the process of determining the function's minimal or maximum value while
satisfying the considered constraints [1, 2]. Metaheuristic algorithms are simple and do not
need the gradient informant, so they are very popular than other optimization methods [3, 4].
Therefore, structural optimizers utilize metaheuristic algorithms as optimization methods for
their problems.

“Corresponding author: School of Civil Engineering, Iran University of Science and Technology, P.O. Box
16846-13114, Iran
TE-mail address: alikaveh@iust.ac.ir (A. Kaveh)


http://dx.doi.org/10.22068/ijoce.2023.13.3.556
https://sae.iust.ac.ir/ijoce/article-1-556-fa.html

[ Downloaded from sae.iust.ac.ir on 2025-10-20 ]

[ DOI: 10.22068/ijoce.2023.13.3.556 ]

310 A. Kaveh, A. Zaerreza

According to the no-free lunch theorems, a single optimization method cannot solve all
types of optimization problems [5]. As a result, researchers develop new meta-heuristic
algorithms that draw inspiration from various sources. Meta-heuristic algorithms can be
classified into four classes based on their source of inspiration. The first class is the
evolutionary-based algorithms which are inspired by biological evolution behaviors. Genetic
Algorithm (GA) [6], Shuffled Complex Evolution (SCE) [7], Biogeography-Based
Optimizer (BBO) [8], and Monkey King Evolutionary (MKE) [9] are examples of this
group. The second category of algorithms is human-based algorithms. These algorithms
mimic human behavior, such as Harmony Search Algorithm (HS) [10], Imperialist
Competitive Algorithm (ICA) [11], Social emotional optimization algorithm (SEOA) [12] ,
Tiki-Taka Algorithm (TTA) [13], League championship algorithm (LCA) [14], Soccer
Game Optimization (SGO) [15], Shuffled Shepherd Optimization algorithm (SSOA) [16],
Past Present Future Algorithm (PPF) [17], and Volleyball Premier League Algorithm (VPL)
[18].

The third type of algorithm is swarm-based, which mimics the social behavior of various
animals. Particle Swarm Optimization (PSO) [19], Emperor Penguin Optimizer [20], Killer
Whale Algorithm (KWA) [21], , Dragonfly algorithm (DA) [22], Animal Migration
Optimization Algorithm [23], Bird Swarm Algorithm (BSA) [24], Butterfly Optimization
Algorithm (BOA) [25], and Fruit Fly Optimization (FFO) [26] are the example of this
group. The final class of algorithms is physics-based algorithms, which employ physical
laws to generate a new solution in each iteration, such as, Sonar Inspired Optimization (SI1O)
[27], Radial Movement Optimization (RMO) [28], Ray Optimization [29], Lightning Search
Algorithm (LSA) [30], Tug of War Optimization (TWO) [31], Electro-magnetism
Optimization (EMO) [32], and lons Motion Optimization (IMO) [33].

Developing new metaheuristic algorithms is helpful in handling new optimization
problems. However, improving the existing algorithms is more suitable to handle the
different optimization problems. For example, Kaveh and Talatahari [34] presented a new
version of the charged system search for the optimum truss structure design. Nabati and
Gholizadeh [35] introduced the modified version of the Newton algorithm for the
performance-based optimization of the steel frame. Alkayem et al. [36] presented a novel
oppositional unified particle swarm gradient-based optimizer for structural damage detection
problems. Kaveh and Zaerreza [37] applied the metaheuristic algorithms for reliability-based
design optimization of the steel frame. llchi Ghazaan et al. [38] developed the hybrid version
of the colliding bodies optimization for the optimal design of the truss and frame structures.
Dehghani et al. [39] presented a modified version of the adolescent identity search algorithm
for the optimum design of the frame structures.

The displacement and force methods are the two well-known structural analyzing
methods [40]. The computing time required by these methods is proportional to the number
of equations that must be solved to obtain the stress or displacement of the nodes. The
number of equations depends on the degree of kinematical indeterminacy (DKI) and the
degree of statical indeterminacy (DSI). The DKI and DSI values represented the number of
equations to be solved using the displacement and force methods, respectively. Although the
time difference is not significant during a single analysis, the time gap grows over the
optimization process owing to many structural analyses. Therefore, the researchers applied
the force method instead of the displacement method with the optimization problem has less
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DSI than DKI. For example, Kaveh and Malakoutirad [41] applied the force method for the
optimum design of the structures using the hybrid genetic algorithm and particle swarm
optimization. Kaveh and Rahami [42] applied the force method for the optimum design of
the truss structures.

In this paper, for the first time, three improved algorithms named the enhanced colliding
bodies optimization (ECBO), improved shuffled Jaya algorithm (1S-Jaya), and Vibrating
particles system - statistical regeneration mechanism algorithm (VPS-SRM) are applied to
the optimum design of the frame structures using the force method. The structures
considered in this study have lower DSI than DKI. Hence the force method is faster than the
displacement method. In addition, Kaveh and Zaerreza [43] demonstrate the effectiveness of
the force method on the structures analyzed in this work. For this purpose, the force method
is utilized as the structural analysis method.

2. FORCE METHOD

There are different types of force methods, including the topological force method [44],
integrated force method, algebraic force method, and graph theoretical force method [45,
46]. The graph-theoretical force method is easier to implement than other force methods,
and the resultant flexibility matrix is sparser than the other force methods [47]. This study
employs the graph-theoretical force method as a result.

Considered the structure with y time statically independent. In order to obtain the stress
of the member using Eq. (1), the y independents unknown are eliminated from the structure.

r= Byp+ B,q (1)

where r represents the stress of the members, p represents the joint loads; g represents the
forces of redundants; B, and B, are rectangular matrices with m rows and n and y columns,
respectively; n represents the number of joint load components, and m represents the number
of independent member components.

In Eq.l, the force of redundants is unknown. Therefore, the load-displacement
relationship and the virtual work concept are employed to eliminate g from Eq. (1). The
Eq.(1) is restructured as illustrated below:

vo = [BoF By — BoFyBy(BiF,By) 'BiF,,B,lp )

r = [B,— B,(BiF,B,) 'B{F,By]p (3)

where the v, represents the displacement associated with the force components of p, F,, is
the unassembled flexibility matrix, G = B¢ F,,,B, is known as the flexibility matrix of the
structure.

In various variations of the force method, the B, and B, matrices are produced in various
ways. Using the graph-theoretical force method, the spanning forest is generated from
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structural supports in order to construct the B, matrix. Calculating each sub-matrix of the
B, by transferring each joint load to a support node. More details are accessible in Refs. [43,
47].

For the form of the B, the set of the cycle basis is required. Various algorithms exist for
discovering the cycle basis. Nevertheless, the Kaveh's methods produce a sparser matrix
than other techniques. After generating the cycle basis using the Kaveh methods, one
element of each cycle is cut at its initial node, and six bi-actions are applied. In the B, sub-
matrix, the columns represent the internal forces at the lower-numbered end of the ith
member when six bi-actions are applied at the jth cut. More details are accessible in Refs.
[46, 47].

3. IMPROVED METAHEURISTICS

3.1 Enhanced colliding bodies optimization

Enhanced colliding bodies optimization algorithm (ECBO) is developed by Kaveh and llchi
Ghazaan [48]. ECBO is one of the famous improved metaheuristic algorithms which is used
in different fields such as reliability assessment of trusses [49], and reliability-based
optimization of the dome trusses [50]. ECBO algorithm starts with the solutions generated
randomly in the search space, each of which is called as Colliding Body (CB). Then, CBs
are evaluated, and the specified mass for them is calculated using Eq (4).

NV CED I
OYE1/f(CB)

=1,2,..,nCB ()

where f(CB;) represents the objective function value of the ith CB, and nCB is the number
of colliding bodies. After that, the specified number of the best solution are stored in the
memory named colliding memory (CM). This memory is updated in each iteration of the
optimization. Using CM, the vector of solutions saved in CM is added to the current
population, and the same number of the current worst CBs are deleted in each iteration.
Next, the candidate solutions are sorted based on their mass and divided into two district
groups. The first fifty percent of the sorted population is considered the first group and
named stationary CBs, while the next half of them are assumed to be moving objects. The
moving CBs are moving toward the stationary CBs. The velocities of the stationary and
moving CBs are calculated as follows:

vp=0; i=12.,— ®)
. nCB nCB
171:631-_#—(:31' 5 I,=T+1,T+2,...,TLCB (6)
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where v; is the velocities of the CBs before collision, v; is the velocities of the CBs after
collision, € is the coefficient of restitution (COR) decreasing linearly from unit to zero; it is
the current iteration number of the algorithm; MaxNITs is the maximum number of
algorithm iterations. After calculating the velocities, the new position of the stationery and
moving CBs are calculated using Egs. (10) and (11).

nCB
CBhew; = CByig; +rand; o v ; i=1.2, o (10)
, ~ nCB nCB
CBnew,i = CB ,, ncs + rand;ov; ; i=——+1,——+2,..,nCB (11)
= 2 2

where rand; generates a uniformly distributed random vector in which each component is in
the range of [—1,1] and the sign ‘‘o’’ is the element-by-element multiplication between two
vectors.

In order to prevent the early convergence in the ECBO, the escape from the local optima
mechanism is considered. If a randomly generated number in the range of (0,1) is less than
the specified value (i.e., pro), then escaping from the local optima mechanism is applied. In
this mechanism, one of the design variables is selected randomly and regenerated randomly
in the search space. The optimization process will be ended when the maximum number of
iterations is reached.

3.2 Improved shuffled Jaya algorithm

The second algorithm considered in this study to investigate its performance in the optimum
design of the frame structures using the force method is the improved shuffled Jaya
algorithm (IS-Jaya). 1S-Jaya is developed by Kaveh et al. [51] to improve the Jaya
algorithm'’s performance. 1S-Jaya performs well in both optimization problems with discrete
and continuous design variables [52]. Like the other metaheuristic optimization method, this
algorithm is started from the solution, which is randomly generated in the search space.
Then the solutions are divided into subpopulations using the shuffled procedure. To this end,
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first, all of the solutions are sorted based on their objective function. Then, equal to the
number of subpopulations, the best solutions are selected and randomly added to each
subpopulation. To place the second member of each subpopulation, the best solution of rest
of solutions is selected and added randomly to each subpopulation. This process is repeated
until all of the solutions are divided into subpopulations. More detail about the shuffled
process is available in Ref [16]. Then, the step size for each solution is generated using Eq.
(12).

Stepsize; = rand X (Xpest — X;) —rand X (Xyorst — Xi) (12)

where the rand is the random vector generated between 0 and 1. X; is the considered
solution. X,.,; and X, are the best and worst solutions for the subpopulation to which X;
belongs. After that, the new solution is calculated as follows.

X" = X; + Stepsize; (13)

Then, the escaping from local optima mechanism is applied. To do this, one solution in
each subpopulation is selected, and one variable of them is regenerated using Eq. (14).

Xinew = Xlnew + 0.1 X randn X (Xmax - Xmin) (14)

in which randn is the normally distributed random number. X,,,,, is the upper bound of the
search space. X,,;, is the lower bound of the search space. After that, the replacement
strategy is applied. Using this strategy, the new solution is compared with their old solution
in the aspect of the objective function, and the worst of them are omitted. Same as the
ECBO, the IS-Jaya algorithm stopped when the maximum number of iterations is reached.

3.3 Vibrating particles system - statistical regeneration mechanism algorithm

The vibrating particles system - statistical regeneration mechanism algorithm (VPS-SRM) is
the new improved version of the VPS, which is developed by Kaveh et al. [53]. VPS-SRM is
started from the solution which is generated randomly in the search space. Then the new
position of each candidate solution is generated. In the VPS-SRM, 80 percent of the solution
is generated using the following equation.

Vpi®™ = wy X (DX AXry+HA)+ wy, X (D X AX1, +GA) + wy (15)
X (DX AXr;+ BA)

where Vp[**" is the new position of the ith agent in the search space. 1y, r,, and r; are the
random number which is generated between 0 and 1. w,, w,, and w; are the parameter of
the algorithm, which sum of them is one. HA is the best solution obtained so far. The
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parameter like p is defined by the user within (0,1), and the random number within (0,1) is
generated for each agent. If the p < random number, then w is set to zero. D and A are
defined as follows:

a

D=< Iter >_ (16)

Maxlter
A= wy x (HA— VPP + w, x (GA— VPP') + w; x (BA— VP?'?) (17)

in which Iter is the current number of the iteration. MaxIter is the maximum number of
the iteration. a is the user-defined parameter, and VP?'4 is the position of the ith particle in
the previous iteration.

Remaining of the solutions are generated using the statistical regeneration mechanism
(SRM). SRM is developed by Kaveh et al. [54] and applied to improve the different
optimization methods, such as enhanced dandelion optimizer [55]. In order to apply the
SRM, the mean and standard deviation of the solutions stored in the memory of the VPS are
obtained. Then, the position of the considered agent is replaced with the best position of the
best solution obtained so far. After that, in the first fifty percent of the optimization iteration,
twenty percent of the positions are alternated using Eq. (18). Otherwise, only one of its
positions is modified using Eq. (18):

Vpi*®” = U(Mean — Std — Sigma, Mean + Std + Sigma) (18)

where U is the operator that returns a random number generated from the continuous
uniform distribution with lower and upper endpoints specified by Mean — Std — Sigma
and Mean + Std + Sigma. Mean and Std are the average and standard deviation of the
solutions stored in the memory of the VPS. Sigma is a parameter that helps the statistically
regenerated mechanism to work efficiently when the entire population converges to the
specified value and is defined as follows.

Sigma = {5 If Std < 0.01 x (VPmax_— ypmin) (19)
0 otherwise
where VP™A* and VP™" are the upper and lower bound of the search space.

In order to keep the solution in the search space, the harmony search-based boundary
handling approach is employed. Harmony search-based boundary handling approach has the
memory which is stored the best position obtained by the algorithm. The size of the memory
is identical to the population size of the algorithm. The maximum number of iterations is
considered as the termination condition of the algorithm. If the termination condition is
satisfied, the optimization process is stopped, and the best solution stored in the memory is
reported. Otherwise, the memory is updated, and the algorithm goes to the next cycle of
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optimization.

4. DESIGN EXAMPLES

In this study, three benchmark frames named 1-bay 10-story frame, 3-bay 15-story frame, and
the 3-bay 24-story frame are considered to investigate the performance of the optimization
algorithms. Here, for the first time, the performance of these algorithms is tested in these frames
using the graph-theoretical force method. In these examples, AISC-LRFD requirements are
fulfilled for the stress and displacement limitation. The population size and the maximum
number of function evaluations are set to 20 and 20000, respectively. Other parameters of the
algorithms are the same as their main paper.

4.1 The 1-bay 10-story steel frame

The 1-bay 10-story steel frame is the first problem considered in this study. The schematic
view, loading condition, and member grouping of the problem is given in Figure 1. The section
for beam elements is picked from the pool of the 267 W-section, and the section for the column
members is picked from W 12 and W 14 sections. Members' yield stress and elasticity modulus
are set to 36 ksi and 29000 ksi, respectively. The degree of statical indeterminacy (DSI) and
degree of kinematical indeterminacy (DKI) of this structure are 30 and 60, respectively.
Therefore, the force method is the optimal analysis method in this example.

6 kips/ft
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9@

3 kips/ft
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Figure 1. Schematic view of the 1- bay 10-story steel frame

The results obtained by the enhanced colliding bodies optimization (ECBO), improved
shuffled-Jaya (IS-Jaya), Vibrating particles system - statistical regeneration mechanism
algorithm (VPS-SRM), and particle swarm optimization- statistical regeneration mechanism
algorithm (PSO-SRM) [43] are provided in Table 1. According to this table, 1S-Jaya and
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VPS-SRM can find the optimum result same as the PSO-SRM. In addition, the statistical
result obtained by the 1S-Jaya is better than VPS-SRM and ECBO. The convergence history
of the algorithms is provided in Figure 2.

Table 1: Comparison results of the considered algorithms with another method in the 1-bay 10-
story steel frame.

Element group PSO-SRM [43] ECBO I1S-Jaya VPS-SRM
1 W14x233 W14x233  W14x233  W14x233
2 W14x176 W14x176  W14x176  W14x176
3 W14x159 W14x132  W14x159  W14x159
4 W14x99 W14x99 W14x99 W14x99
5 W14x61 W12x65 W14x61 W14x61
6 W33x118 W30x124  W33x118  W33x118
7 W30x90 W30x116 ~ W30x90 W30%90
8 W27x84 W27x84 W27x84 W27x84
9 W18x46 W21x44 W18x46 W18x46
Best weight (Ib) 64001.98 65717.98 64001.98 64001.98
Worst weight (Ib)  66150.02 72911.97 66305.97 73385.99
Mean (Ib) 64607.08 68238.81 64746.99 66701.71
SD (Ib) 640.86 1723.33 667.67 2403.44

300000 y
[l

280000 :

90000
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= =VPS-SRM : mean values
IS-Jaya : Best values
IS-Jaya : Mean values

0
260000 1 85000
L

240000 §
|

220000 § 80000
1

1
200000
1 ] .

180000 # 75000
{ ]

1 ]
160000
| ]

< 140000 ¥
"

tructural weight (Ib)

70000

S

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Number of function evaluations

Figure 2. Convergence histories of the ECBO, VPS-SRM, and IS-Jaya for the 1-bay 10-story
steel frame

4.2 he 3-bay 15-story steel frame

The second example employed for investigating the performance of these three algorithms is
the 3 - bay 15 -story steel frame. The loading condition and element grouping are given in
Figure 3. Cross sections of the members for both beam and column are selected from 267
W-section. Members' yield stress and elasticity modulus are set to 36 ksi and 29000 ksi,
respectively. The maximum last story's sway is limited to 9.25 in. The DSI and DKI of this
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example are 135 and 180, respectively, so the force method is the optimal analysis method.
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Figure 3. Schematic view of the 3-bay 15-story steel frame

Optimization results are summarized in Table 2. According to this Table, EVPS-SRM
acquired the optimum weight (87123.97 Ib) than other methods, including PSO-SRM
(87183.39 Ib) [43] ECBO (89768.38 Ib), and 1S-Jaya (87261.95 Ib). Moreover, the average
weight of the 30 independent runs of the EVPS-SRM is less than ECBO and 1S-Jaya. The
convergence history of the algorithms is provided in Figure 4. This figure shows that VPS-
SRM converges to the optimum solution faster than other considered methods.

Table 2: Comparison results of the considered algorithms with another method in the 3-bay
15-story steel frame

Element group PSO-SRM [43] ECBO IS-Jaya EVPS-SRM
1 W12x96 W18x106 W14x99 W14x90
2 W27x161 W27x161 W27x161 W36x170
3 W27x84 W24x84 W27x84 W27x84
4 W21x111 W27x114 W24x104 W21x111
5 W14x61 W10x68 W21x68 W14x61
6 W30x90 W30x90 W18x86 W18x86
7 W8x48 W12x53 W8x48 W8x48

8 W12x65 W21x68 W12x65 W14x61
9 W6x25 W18x35 W8x28 W14x34
10 W8x40 W10x39 W10x39 W18x35
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11 W21x44 W21x44 W21x44 W21x44
Best weight (Ib) 87183.39 89768.38 87261.95 87123.97
Worst weight (Ib) 88861.77 97950.19 95577.42 92135.22
Meant (Ib) 87606.54 93624.38 88552.35 88513.65
SD (Ib) 318.36 2039.44 1848.84 1673.72
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Figure 4. Convergence histories of the ECBO, VPS-SRM, and IS-Jaya for the 3-bay 15-story
steel frame

4.3 The 3-bay 24-story steel frame

The last example investigated in this paper is the 3-bay 24-story steel frame. This frame is
made up of 168 members, which are divided into 20 groups, as shown in Figure 5. The
section of the column members is picked from W 14 sections, and beam members are
selected from 267 W sections. The modulus elasticity of the members is quale to 29732 ksi,
and the members' yield stress is set to 33.4 ksi. The DSI and DKI are 216 and 288. Hence,
the force method is faster than the displacement method in this example.
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Figure 5. Schematic view of the 3-bay 24-story steel frame

According to Table 2, 1S-Jaya acquired the optimum weight (201042.03 Ib) than other
methods, including PSO-SRM (201402.05 Ib) [43] ECBO (203046.69 Ib), and VPS-SRM
(202392.03 Ib). Also, the average weight and Standard deviation obtained by the 1S-Jaya are
better than ECBO and VPS-SRM. The convergence history of the algorithms is provided in
Figure 6.

Table 3: Comparison results of the considered algorithms with another method in the 3-bay 24-
story steel frame

Element group PSO-SRM [43] ECBO IS-Jaya VPS-SRM
1 W14x159 W14x132 W14x159 W14x145
2 W14x132 W14x109 W14x132 W14x159
3 W14x109 W14x90 W14x109 W14x109
4 W14x74 W14x90 W14x74 W14x74
5 W14x82 W14x61 W14x68 W14x68
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6 W14x48 W14x74 W14x38 W14x38
7 W14x30 W14x48 W14x34 W14x34
8 W14x22 W14x22 W14x22 W14x22
9 W14x90 W14x99 W14x90 W14x99
10 W14x99 W14x109 W14x99 W14x90
11 W14x90 W14x109 W14x90 W14x90
12 W14x90 W14x90 W14x90 W14x90
13 W14x61 W14x82 W14x68 W14x68
14 W14x53 W14x43 W14x61 W14x61
15 W14x34 W14x30 W14x34 W14x34
16 W14x22 W14x22 W14x22 W14x22
17 W30x90 W30x90 W30x90 W30x90
18 W6x15 W8x18 W6x15 W6x15
19 W24x55 W24x55 W24x55 W24x55
20 W6x8.5 W6x8.5 W6x8.5 W14x43
Best weight (Ib)  201402.05 203046.69 201042.03 202392.03
Worst weight (Ib) 207372.11 251333.56 216006.12 238176.41
Mean (Ib) 203400.11 214820.81 205142.09 21401251
SD (Ib) 1539.31 11021.81 3964.48 9354.60
e 270000 : :
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Figure 6. Convergence histories of the ECBO, VPS-SRM, and IS-Jaya for the 3-bay 24-story

steel frame

5. CONCLUSOINS

In this study, the optimum design of the frame structures using the force method and three
recently improved algorithms named enhanced colliding bodies optimization (ECBO),
improved shuffled Jaya algorithm (1S-Jaya), and Vibrating particles system - statistical
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regeneration mechanism algorithm (VPS-SRM) are investigated. The considered frames
include the 1-bay 10-story steel frame, 3-bay 15-story steel frame, and 3-bay 24-story steel
frame. Obtained results show that in the first example IS-Jaya and VPS-SRM acquired the
optimum solution. In the second example, VPS-SRM can obtain the best solution. Also, the
statistical results of the VPS-SRM are better than 1S-Jaya and ECBO. In the last example, IS-
Jaya acquired better results than other methods. This shows that the 1S-Jaya and VPS-SRM
have better performance than other considered methods and can be utilized in other
optimization problem of the frame structures.
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