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ABSTRACT

In this study, experimental and computational approaches are used in order to develop and
optimize self-compacting concrete mixes (Artificial neural network, EVPS metaheuristic
algorithm, Taguchi method). Initially, ten basic mix designs were tested, and an artificial
neural network was trained to predict the properties of these mixes. The network was then
used to generate ten optimized mixes using the EVPS algorithm. Three mixes with the
highest compressive strength were selected, and additional tests were conducted using the
Taguchi approach. Inputting these results, along with the initial mix designs, into a second
trained neural network, 10 new mix designs were tested using the network. Two of these
mixes did not meet the requirements for self-compacting concrete, specifically in the U-box
test. However, the predicted compressive strength results showed excellent agreement with
low error percentages compared to the laboratory results, which indicates the effectiveness
of the artificial neural network in predicting concrete properties, thus indicating that self-
compacting concrete properties can be predicted with reasonable accuracy. The paper
emphasizes the reliability and cost-effectiveness of artificial neural networks in predicting
concrete properties. The study highlights the importance of providing diverse and abundant
training data to improve the accuracy of predictions. The results demonstrate that neural
networks can serve as valuable tools for predicting concrete characteristics, saving time and
resources in the process. Overall, the research provides insights into the development of self-
compacting concrete mixes and highlights the effectiveness of computational approaches in
optimizing concrete performance.
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1. INTRODUCTION

A major goal of concrete specialists is to create concrete without the need for vibration by
using additives and altering the ratios of components in the mix as well as eliminating the
weaknesses of concrete caused by shaking and compaction. The result of these efforts was
the invention of self-compacting concrete. Over the past few decades, researchers have
focused on the advantages of self-compacting concrete, and they have sought to make
concrete that fills molds without vibration. The definition of self-compacting concrete given
by Bartos is concrete that flows under its own weight without any vibration and even with
dense rebars, it is able to fully fill the molds and maintain its homogeneity [1]. In Japan, this
concrete was initially developed in order to achieve durable structural concrete without
requiring vibration to perform its function [2]. The following are some of the important
advantages of this concrete:

Elimination of shaking operations, ease of pouring concrete, increased execution speed,
ensuring proper compaction, especially in sections with high rebar density, optimal
resistance against aggregate separation, smooth and beautiful final surfaces, reduced noise
pollution in urban environments, and the ability to create smooth and beautiful final surfaces
[3]. Since self-compacting concrete is widely used, optimizing its resistance using artificial
neural networks is an interesting research topic. Unlike the classical methods available in
statistical theories, the artificial neural network model does not require a specific model or
function, as well as limiting assumptions to linearize the problem [4]. To date, many
researchers have developed different models of artificial neural networks to predict the
properties of different concretes, which is described below in the field of concrete
technology. Oztas et al. [5] used artificial neural networks in 2006 to predict the
compressive strength and slump of high strength concrete. The modulus of elasticity of
normal and high strength concrete was predicted by Demir using an artificial neural network
[6]. Using artificial neural networks, Rofooei et al. [7] presented a novel method for
investigating seismic vulnerability of concrete structures with moment resisting frames
(MRFs). The previous Iranian seismic design code, Standard 2800 (First Edition), was used
to design a number of two-dimensional structural models with varying number of bays and
stories. These structural models were subjected to extensive nonlinear dynamic analyses
under a number of earthquake records in order to determine the seismically-induced damage
they have sustained.

The artificial neural networks was utilized by Barbuta et al. [8] to predict the compressive
strength and flexural strength of polymer concrete containing fly ash. According to Sonebi et
al. [9], artificial neural networks were used to model self-compacting concrete's fresh
properties. According to Kaveh et al. [10], various machine learning techniques were
employed to establish a correlation between the fiber angle and the buckling capacity of
cylinders when subjected to bending-induced loads. There are approximately 11,000 cases in
the data set, containing seven attributes for 11 aspect ratios. Based on the numerical results,
it can be concluded that the Deep Learning model achieves stable results with smaller errors
and higher generalization compared to Random Forest Regression, Decision Tree algorithm,
and Multiple Linear Regression [10]. A combination of meta-heuristic algorithms and two
different types of artificial neural network structures was used by Kaveh and Khavanizadeh
[11] to optimize the parameters of feed forward backpropagation and radial basis function
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networks by using several metaheuristic algorithms. Training and test data sets were
generated using 223 test data on Carbon FRP (CFRP) collected from the available literature,
and various validation criteria were used to verify the models, including mean square errors,
root mean square errors, and correlation coefficients (R). Hosseini et al. [12] used artificial
neural networks to predict concrete's compressive strength, which can be increased simply
by altering aggregate properties without affecting water or cement content; they used
metaheuristic algorithms which can be applied to artificial neural networks efficiently and
effectively. Beskopylny et al. [13] used a planetary ball mill to grind the components into a
finely dispersed state and a particle analyzer to measure the particle size distribution.
Microsilica increased concrete strength by 30% on the outside. It is defined by the American
Concrete Institute (ACI 116R) as amorphous silica produced in electric arc furnaces as a
byproduct of the production of silicon alloys or silicon metal. Gray powdered microsilica is
somewhat similar to Portland cement or fly ash, which is an excellent application of
microsilica as a microscopic distance reducer between aggregate and cement paste in
concrete. It is important to note that by using them, the transition zone gap is minimized, and
concrete is strengthened and has better physical properties. Taguchi's method can be used in
conjunction with artificial neural networks due to the large number of design variables and
simultaneous use of these parameters. As a method, the Taguchi method optimizes the level
of parameters affecting all types of experiments. In fact, this method is presented as a tool
for improving the quality of products by applying statistical and engineering concepts. In
order to achieve the design goals with the smallest number of tests, the trial and error
method is generally time-consuming and costly. Taguchi's approach involves consciously
changing the input variables in order to identify the amount of change in the process
response. Therefore, by systematically changing the input factors, the effects of these
changes can be evaluated on the output parameters. Using the Taguchi method,
Teimortashlu et al. were able to optimize the compressive strength of self-consolidating
tertiary blend mortars. Three factors were identified at four levels and experiments were
conducted on samples using a L16 design to determine the optimal factor levels [14]. Using
the Taguchi method, Mohini et al. [15] investigated the design of self-compacting concrete
mixtures with high strength. As factors or influencing factors in the design of self-
compacting concrete mix with high strength and the best mix design obtained for high
strength and less presence of absorbed air, they considered the ratio of water to cement, the
amount of water, the percentage of fine aggregate to total aggregate, the amount of fly ash,
the air absorption factor, and the amount of superplasticizers. Side et al. [16] optimized the
mortar mix design by using the Taguchi method to determine the amount of cement to be
replaced with silica fume and obtained the compressive strength of cubic samples measuring
5 x 5 x 5 cm. Based on the results of the study, the optimal ratio for the mixture design was
150 grams of silica fume, 660 grams of cement, and 1400 grams of sand. Thus, 18.52
percent of cement was replaced by silica fume, and its compressive strength measured 54
MPa, pH was 9.75, and water absorption measured 5.369%. According to this study, the
authors have considered the basic designs for self-compacting concrete, and these designs
have passed all tests related to self-compacting concrete, as well as their compressive
strength. In the following, an artificial neural network was trained with the results of the
basic designs, and optimization operations were conducted using EVPS meta-heuristic
algorithm. Several limited designs were selected as favored designs from the artificial neural
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network, and a similar approach was used to select some designs using the Taguchi method.
Then, optimized designs of artificial neural networks and suggested Taguchi method were
subjected to self-compacting concrete tests, and designs which failed to obtain good results
were discarded, and the 28-day compressive strength of other designs was determined.
Design variables included the aggregate size, the amount of cement, and the amount of water
and additives. Using the results of the basic designs and the new results, an artificial neural
network was trained again in accordance with the procedure of the previous step. Based on
the experimental results, the artificial neural network trained at this stage has an acceptable
level of accuracy.

This study is introduced in the first section, followed by a brief discussion of the EVPS
meta-heuristic algorithm, artificial neural network, and Taguchi method. In the third section,
the laboratory program, materials, and consumables are discussed, concrete mix design
specifications are provided, tests are conducted on fresh and hardened concrete, and the
laboratory results are analyzed, and at the end of the paper, the discussion and conclusion
are presented.

2. ABRIEF DISCUSSION OF THE EVPS META-HEURISTIC ALGORITHM,
ARTIFICIAL NEURAL NETWORK, AND TAGUCHI METHOD

2.1 The EVPS meta-heuristic algorithm

Metaheuristic algorithms have gained considerable attention in engineering sciences due to
their broad applicability. They offer versatile problem-solving approaches that can be
applied to a wide range of engineering disciplines. The widespread use of metaheuristic
algorithms in engineering is evident from numerous studies that have investigated their
effectiveness and explored their applications in different engineering domains. These
algorithms provide valuable tools for tackling complex engineering problems and finding
optimal solutions [17-21].

In the field of structural engineering and design, the EVPS algorithm is widely used as an
enhanced version of the VPS algorithm for optimizing problems related to structural
engineering and design. A number of studies have been conducted on the EVPS algorithm as
well as the procedures of it [22-26].

2.2 Artificial Neural Network (ANN)

Artificial Neural Networks (ANNSs) are computational models inspired by biological neural
networks. They serve as intelligence tools, learning patterns and predicting outcomes in
high-dimensional spaces. The performance of neural networks relies on the training process,
which involves adjusting the network’'s weights and biases. This enables the network to
accurately estimate the desired output for a given problem. Within each neuron, as depicted
in Fig. 1, a weighted sum of inputs is computed, and an activation function is applied to this
value along with a bias. Throughout the training phase, the network’s weights and biases are
iteratively modified to minimize the error between the target values (actual values) and the
output values (network predictions) .
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Figure 1. An ANN structure schematic showing an input layer, an output layer, and a
hidden layer [12]

2.3 Taguchi method

Professor Genichi Taguchi introduced the Taguchi method in 1988 with the aim of
achieving optimal combinations while minimizing the number of tests, reducing costs, and
saving time. This approach considers the number of factors and test levels when analyzing
various arrays. In Taguchi's method, signal-to-noise ratios are employed to analyze the
results. The S/N value indicates how the results change over a specific number of tests, and
based on the obtained results, the S/N ratio can be calculated using the following equations:

S 1,
N ~10log,, _ﬁ; i | Smaller the better
S_ ~10log,, lziz Larger the better )
N LN Y
S .
o= ~10log,, [ Gz] Nominal the better

where, yi represents the value obtained for the ith response, and n denotes the number of trial
repetitions. The signal-to-noise ratio reflects the impact of control factors on the response,
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where a higher S/N value indicates a better response. Consequently, the optimal control
levels are determined based on the setting of control factor levels that yield the highest S/N
ratio.

Taguchi's philosophy is built on three fundamental concepts: quality should be designed
rather than checked, minimizing deviations from specified values is the best way to achieve
quality, and products must be designed to be resilient against uncontrollable environmental
conditions.

The third part of the study mentions that the number of influential factors in this study is
ten, and that each of them is examined at three levels. According to Table 1, an orthogonal
array of L27 is used. In L27, 27 trials are required in order to analyze the data. It is
recommended that 310 tests be performed if the Taguchi method is not used in order to
perform a sensitivity analysis on the parameters.

Table 1. The selection of orthogonal arrays

The number of parameters

6 7 8 9 10
The number of levels L8 L12 L16 L32 L16

L27 L27 L27 L27 L27

3. THE LABORATORY PROGRAM

This section discusses the used materials, mixing plans, and tests of fresh and hardened SCC
concrete, as well as their results.

3.1 The utilized materials

For the purpose of this study, aggregate, cement, microsilica powder, and superplasticizer
(the term additive will be used for simplicity) were used to construct concrete samples. The
aggregates are passed through a sieve of 3/8 inch and the remaining aggregates are passed
through a sieve of No. 4. The samples were made using Portland cement type 2 produced at
Delijan City Cement Factory. For self-compacting concrete to achieve the desired
efficiency, additives are required. Among the additive properties used, it is possible to
mention such properties as increased concrete consistency, prevention of aggregate
separation, better compaction, reduction of permeability, and reduced water to cement ratio.

3.2 Specifications for concrete mix design

As a first step, some basic mixing designs containing microsilica for self-compacting
concrete were proposed and tested in the laboratory. At the end, ten Basic Mixing Designs
(BMD) were selected, whose specifications are given in Table 2. It is noteworthy that the ten
selected designs had self-compacting conditions in the fresh concrete phase without bleeding
and passed the self-compacting concrete experimental tests and achieved a satisfactory
compressive strength in the hardened concrete phase. Different mix designs are used with
the available materials in order to provide an economical mixing design for the construction
of self-compacting concrete containing microsilica.
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Table 2. Specifications for ten basic mix designs
Quantity of material (kg/m?)

Mix design Cement Water Microsilica additive Gravel Sand
SCC/BMD1 619 224 62 4 619 934
SCC/BMD2 580 210 87 7 641 961
SCC/BMD3 578 202 58 6 548 1066
SCC/BMD4 607 220 61 7 607 960
SCC/BMD5 600 217 60 7 626 950
SCC/BMD6 571 235 57 4 631 960
SCC/BMD7 590 206 59 6 501 1097
SCC/BMD8 534 193 53 6 589 1077
SCC/BMD9 519 213 52 3 605 1060
SCC/BMD10 515 212 51 6 575 1093

3.3 A selection of three Taguchi method designs

Table 3 presents three selected proposed mixing designs for the Taguchi method. Taguchi's
numerical and graphical analysis indicates that fine aggregate, cement content, water, and
admixture are the factors that influence workability and quality of self-compacting concrete.
The quality and performance of self-compacting concrete can be improved by controlling
and utilizing the properties of each variable intelligently. Experiments conducted in the
laboratory support this observation.

Table 3. Three selected proposed mixing designs for the Taguchi method
Quantity of material (kg/m?)

Mix design Cement  Water Microsilica additive Gravel Sand
T1 619 224 62 4 619 934
T2 580 210 87 7 641 961
T3 578 202 57 6 548 1066

3.4 Construction and Preparation

In order to prepare the mixtures, the required materials must first be accurately weighed.
Next, the measured sand and gravel are poured into an electric mixer, and the cement is
added to the mixture and mixed for one minute. In the following stage, 10% of the cement's
weight is added as microsilica and another minute of mixing is carried out. In the next stage,
half of the mixing water is added to the mixer, and the mixture is blended for one minute. In
the final stage, the remaining water and superplasticizer are thoroughly mixed and added to
the mixer, and the mixing operation continues for three minutes. A self-compaction test is
conducted immediately following the mixing of the mixture, followed by the casting of the
samples and the removal of the samples after 24 hours. The samples are stored in a water
basin at a temperature between 19 and 23 degrees Celsius. For sample preparation and
sample processing, it is advisable to use the same water [27].
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3.5 Self-compacting concrete experiments

Some experiments related to self-compacting concrete have been selected as the
fundamental tests in order to evaluate the self-compacting properties of the samples
produced. In addition to the J-ring test, the V-funnel test, the L-box test, and the U-box test,
Slump flow test, compressive strength and flexural strength tests are required.

3.5.1 L-bhox test

As described in EN 12350-10:20, the L-box test is used to assess the passability and flow
characteristics of self-compacting concrete. This test measures the flowability of concrete
mixtures as they pass through an L-shaped box apparatus. There are two perpendicular
sections in the L-box, with one section being narrower than the other. In the narrower
section, concrete is poured, and the time it takes for the concrete to flow through and fill the
wider section is recorded. During this test, concrete is evaluated for its ability to flow and fill
complex shapes and congested reinforcement areas [28]. Approximately 14 liters of concrete
are poured into an L-shaped box, and after one minute, the gate is opened, and the timing
begins. Concrete passes through the steel bars and enters the horizontal section of the box.
The time taken for the concrete to reach 200 and 400 millimeters along the horizontal
section of the box is recorded in order to determine the viscosity of the concrete. A blocking
ratio can be calculated by measuring the height of the concrete in the vertical section (H1)
and the height of the concrete at the end of the horizontal section (H2). The closer the
concrete's flowability is to ideal, the closer the heights H1 and H2 will be to each other,
resulting in a close blocking ratio. Conversely, as the flowability of the concrete decreases,
the blocking ratio decreases.

3.5.1.1 Results of L-Box Test

Table 4 presents the results of the L-Box test, and it should be noted that the acceptable
range for the (H2/H1) ratio lies between 0.8 and 1 [29, 30]. When the ratio is closer to one, it
indicates equal height of concrete in the two regions, indicating the concrete can pass
through the reinforcement and exhibits satisfactory performance. Based on the results
shown, all designs are within the acceptable range. Additionally, two cases that failed the
test and were predicted by the artificial neural network based on the initial design are
included. Fig. 2 illustrates the time comparison between L200 and L400 in the L-Box test

Table 4. Results of L-Box Test

Mix design H H2/H1 Acceptable range Result
SCC/BMD1 862 862 1 0.8-1 ok
SCC/BMD2 9.02 9.02 1 0.8-1 ok
SCC/BMD3 9.02 9.02 1 0.8-1 ok
SCC/BMD4 874 874 1 0.8-1 ok
SCC/BMD5 827 827 1 0.8-1 ok
SCC/BMD6 9.17 917 1 0.8-1 ok
SCC/BMD7 865 865 1 0.8-1 ok
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SCC/BMD8 811 811 1 0.8-1 ok
SCC/BMD9 9 8.74 0.97 1-0.8 ok
SCC/BMD10 10.23 835 0.82 1-0.8 ok
ANN1 716 10.84 151 0.8-1 Not ok
ANN?2 766 10.34 1.35 0.8-1 Not ok
6
4

23

=

[§5]

1 2 3 4 5 6 7 8 9 10 11 12

The number of samples

EI1200 WL400

Figure 2. Comparison of Time for L200 and L400 in L-Box Test

3.5.2 U-hox test

According to the UNI 11044 standard, the U-Box test evaluates the flowability and passing
ability of self-compacting concrete [31]. A U-shaped box apparatus is used for this test,
which consists of two vertical arms connected by a horizontal section. In order to conduct
the U-Box test, a specified volume of self-compacting concrete is poured into a U-shaped
box. In order to fill the horizontal section, concrete is allowed to flow through the arms. The
concrete's ability to pass the arms is measured by the time it takes for it to reach specific
marks along the arms. U-Box tests provide valuable information regarding the ability of self-
compacting concrete to flow and pass through tight spaces, such as congested reinforcement
or narrow gaps. Test results can be used to optimize mixture proportions and ensure the
desired workability and performance of concrete. A U-Box test is an important tool for
assessing the suitability of self-compacting concrete for various construction applications,
particularly in those requiring high flowability and good passability. The interior surface of
the U-shaped box has been moistened, and the lower gate of the box has been closed. The
left side of the box is then filled with approximately 20 liters of concrete. Upon removing
the middle movable plate, the concrete will flow from the left side of the box to the right
side after one minute. After the concrete has ceased flowing, the height of the concrete is
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measured on both sides of the box and labelled as parameters H1 and H2. Filling height
difference is calculated as the difference in height between these two values. The closer the
filling height difference to zero, the better the flowability of the concrete will be. [32]

3.5.2.1 Results of U-Box Test

Based on Table 5, the results can be interpreted by determining the height difference
between the two compartments. The closer the height difference between the concrete in the
two compartments is to zero, the more fluid and passable the concrete will be. Alternatively,
as this value increases, the viscosity of the concrete also increases, increasing the likelihood
of a blockage. In the case of self-compacting concrete, the maximum height difference
between the two compartments should not exceed three centimeters. [32]

Table 5. Results of U-Box Test
H1 H2 H1-H2 Acceptable range

Mix design cm) (cm) (cm) (cm) Result
SCC/BMD1 295 295 O 0-3 ok
SCC/BMD2 29 29 0 0-3 ok
SCC/BMD3 289 289 O 0-3 ok
SCC/BMD4 284 284 O 0-3 ok
SCC/BMD5 294 294 O 0-3 ok
SCC/BMD6 286 286 O 0-3 ok
SCC/BMD7 285 285 O 0-3 ok
SCC/BMD8 314 295 19 0-3 ok
SCC/BMD9 28.65 27.46 1.19 0-3 ok
SCC/BMD10 29.32 27.34 1.98 0-3 ok
ANN1 33.02 289 412 0-3 Not Ok
ANN?2 311 279 3.2 0-3 Not Ok

3.5.3 V-funnel test

In order to evaluate the flowability and workability of self-compacting concrete, the V-
funnel test is conducted. A V-shaped funnel is filled with the concrete mixture, and the time
it takes for the concrete to flow through the funnel is measured. It is necessary to place the
V-funnel on a flat surface and close the bottom outlet of the funnel. The concrete mixture is
then poured into the funnel without being compacted. Upon removing the stopper from the
bottom outlet, the concrete is allowed to flow out of the funnel for a specified period of time.
The flow time obtained from the V-funnel test provides an indication of the self-compacting
concrete's viscosity and flowability. Flow times that are shorter indicate better flowability,
indicating that the concrete is able to flow easily and fill intricate spaces without requiring
external compaction. Conversely, longer flow times may indicate a higher viscosity and
reduced flowability, which may require additional compaction efforts. In order to ensure that
self-compacting concrete is suitable for construction applications, the V-funnel test is widely
used to assess its flow properties. As a measure of concrete segregation, this test can be
used. As well as the time taken for concrete to flow out, which is measured in this test, the
manner in which concrete flows through the funnel and the uniformity of the discharged
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concrete are also important factors to consider. This device can also provide a visual
indication of the homogeneity of the concrete. The inner surfaces of the V-shaped funnel are
moistened after it has been placed on its stand. It is then filled with 12 liters of concrete, and
after 10 seconds, the bottom outlet of the funnel is opened, allowing the concrete to flow out
by its own weight. It is recorded how long it takes for the concrete to flow out of the funnel.
Self-compacting concrete should be discharged through the V-funnel device within six to
twelve seconds. It should be noted, however, that this parameter alone is not conclusive. A
number of self-compacting concretes with discharge times less than 6 seconds or greater
than 12 seconds have also been successfully applied. Generally, if the discharge time
exceeds 12 seconds, it indicates high plastic viscosity, while if the discharge time is less than
6 seconds, it indicates low viscosity and a likelihood of segregation. [33]

3.5.4 J-ring test

According to ASTM C1621, the J-ring test is conducted to determine the passing ability and
segregation resistance of self-compacting concrete [34]. In this test, a specially designed J-
ring is placed on a flat surface and filled with self-compacting concrete. J-rings are
composed of a cylindrical section and an outward-extending J-shaped section. The J-ring is
filled with concrete and then vibrated to ensure proper compaction. The excess concrete is
then removed from the top of the J-ring, and the height of the concrete inside the J-ring is
determined. Following the initial height, the J-ring is lifted vertically by applying a gentle
upward force, while ensuring the base remains in contact with the concrete. When the J-ring
is gradually lifted, the concrete flows out from underneath the J-shaped section, which is
known as the "slump flow height.". This height of concrete passing through the J-ring is
known as the "J-ring flow height". Slump flow height and J-ring flow height provide an
indication of the self-compacting concrete's ability to pass. Generally, a smaller difference
indicates a better ability to pass and less susceptibility to segregation. Alternatively, a
greater difference indicates a reduced ability to pass and an increased risk of segregation. In
accordance with ASTM C1621, the J-ring test provides a standardized method for evaluating
the ability of self-compacting concrete to flow through restricted sections. As a result,
concrete is better able to fill formwork, penetrate dense reinforcement, and maintain
homogeneity during placement. It is possible for engineers and contractors to assess whether
self-compacting concrete is suitable for specific construction applications and make
necessary adjustments in order to optimize its performance by conducting the J-ring test.
Table 5 presents the results of the J-ring experiment

3.5.5 Slump Flow test

The slump flow test is conducted to evaluate the flowability and consistency of self-
compacting concrete, following the guidelines of ASTM C1611/C1611M [35]. It measures
the ability of the concrete mixture to flow and spread freely without segregation or excessive
resistance. In this test, a slump cone is filled with self-compacting concrete in a single lift,
without any compaction or vibration. The cone is then slowly lifted vertically, allowing the
concrete to flow out and spread on the base plate. The diameter of the concrete spread is
measured in two perpendicular directions, and the average value is calculated. The measured
diameter of the concrete spread provides an indication of the slump flow of the self-
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compacting concrete. A larger diameter indicates better flowability, as the concrete is able to
spread over a wider area. On the other hand, a smaller diameter suggests reduced flowability
and potential issues with filling formwork or penetrating congested reinforcement. The
slump flow test, according to ASTM C1611/C1611M, is an important tool for assessing the
workability and flow properties of self-compacting concrete. It helps ensure that the
concrete can easily flow and fill complex shapes and structures, while maintaining its
homogeneity and avoiding segregation. By conducting the slump flow test, engineers and
contractors can make informed decisions regarding the selection and adjustment of materials
to achieve the desired flow characteristics of self-compacting concrete. Table 6 presents the
results of the test.

Table 6. The results of the J-ring and slump flow tests

Mix design mpSIU J-ring Acceptable range Result
(cm) (cm)  (cm)
SCC/BMD1 62 1.1 >60 ok
SCC/BMD2 66 1.2 >60 ok
SCC/BMD3 70 0.83 >60 ok
SCC/BMD4 68 0.74  >60 ok
SCC/BMD5 77 0.7 >60 ok
SCC/BMD6 65 1.2 >60 ok
SCC/BMD7 79 065 >60 ok
SCC/BMD8 67 0.9 >60 ok
SCC/BMD9 63 1 >60 ok
SCC/BMD10 60 1.4 >60 ok

3.5.6 The compressive strength test

A compressive strength test, conducted in accordance with BS 1881, is a commonly
conducted test to determine the strength of concrete [36]. A cylindrical or cubical specimen
of concrete is prepared and subjected to a compressive load until failure occurs. The
compressive strength of concrete is calculated by dividing the maximum load applied to the
specimen by its cross-sectional area. The purpose of this test is to assess the structural
integrity and load-bearing capacity of concrete in various construction applications. In order
to ensure the quality and durability of concrete structures, the results of the compressive
strength test are crucial. The compressive strength of cubic specimens with dimensions of
10x10x10 centimeters was tested at the age of 28 days in this study. In a water tank,
specimens were prepared. Failure of a concrete specimen is illustrated in Fig. 3, a stress-
strain curve is illustrated in Fig. 4 for one of the basic mix designs, and a compression
strength chart is illustrated in Fig. 5 for each of the 10 basic mix designs.
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Figure 5. Compressive strength for the 10 basic mix designs

3.5.7 Flexural strength test

In the flexural strength test of concrete, the tensile strength of the concrete is indirectly
measured. The purpose of this test is to measure the strength of concrete against bending.
Concrete is typically tested for flexural strength using either the three-point loading method
(ASTM C78) or the center-point loading method (ASTM C293). The three-point loading
method was used in this study. [37, 38]

3.5.7.1 Results of Flexural Strength Test

As a result of conducting the three-point flexural test on concrete beam specimens based on
10 basic mix designs, Fig. 6 illustrates the results of the three-point flexural test when
applied at the center of the span. Furthermore, Fig. 7 illustrates a broken concrete beam
during a flexural strength test.
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Figure 6. Three-point flexural test on concrete beam specimens using 10 basic mix designs
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Figure 7 Broken concrete beam during a flexural strength test

3.5.8 Test Results of 10 Basic Mix Designs, Taguchi-Based Selections, and Optimal
Artificial Neural Network Outcomes

The results of the tests conducted on the ten basic mix designs, as well as three selected
designs based on the Taguchi method and the best results from the artificial neural networks
that yielded the best results, are presented in Table 7. In this table, the results of the J-ring
and V-funnel tests are provided as a range for the 10 basic mix designs and three selected
designs based on the Taguchi method. Additionally, two of the best results from the initial
artificial neural network (in the first training) and three of the best results from the second
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artificial neural network (in the second training) were considered.

Table 7. Test results on the 10 basic mix designs, as well as three selected designs based on the
Taguchi method as well as the best results from the artificial neural networks (ANNS).

Fresh Concrete Hardened Concrete
J-ring V- U-box Test L-box 28-day Compressive
Mix design funnel (Difference) Strength (kg/cm?2)
Experimental The ANN
(mm)  (sec) (mm) (mm) Results Prediction
SCC/BMD1 0 1 407 447
SCC/BMD?2 0 1 446 454
SCC/BMD3 0 1 524 498
SCC/BMD4 0 1 418 448
SCC/BMD5 8 o1 0 1 424 400
SCC/BMD6 N © 0 1 449 460
SCC/BMD7 e 0 1 509 550
SCC/BMDS8 0 1 500 472
SCC/BMD9 0 1 512 563
SCC/BMD10 0 1 516 527
TAGUCHI1 o) 0 1 475 451
TAGUCHI2 S g 0 1 411 439
TAGUCHI3 8 0 1 457 521
ANN1-1 S © 0 1 481 500
ANNL-2 9 = 0 1 445 454
ANN2-1 0 475 470
S ©
ANN2-2 o - 0 1 437 446
o |l
ANN2-3 0 1 397 391
4. DISCUSSION

Ten basic mix designs were initially tested for self-compacting concrete, compressive
strength, and flexural strength. Based on the gradation of aggregates, the amount of cement,
water, and additives, ten factors were taken into account as effective design variables on the
test results. Based on the ten basic mix designs, an artificial neural network was trained and
ten optimized mixes were extracted using the EVPS algorithm based on the initial trained
neural network. The mixes were then tested according to the tests listed above and three
mixes were selected with the highest compressive strength while the results of the other tests
were acceptable. In addition, 27 additional tests were conducted using the Taguchi approach
with ten design variables. Without the Taguchi method, it would require a large number of
samples with combinations of ten base mixes, which is practically impossible.

As a result of failing certain tests, some of the Taguchi results were discarded, and the
remaining results from the Taguchi method, the initial ten basic mix designs, and the three
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top mixes from the initial neural network were then input into the neural network. It was
observed that the predicted results differ slightly from the laboratory results, indicating that
the trained network has achieved a reasonable level of accuracy. During the training of the
neural network, the more data with greater diversity that are provided, the better the network
learns, and the closer the prediction results will be to the laboratory results. Consequently,
artificial neural networks can be regarded as reliable and cost-effective tools that provide
significant predictive power for the intended issues, as well as saving time and resources.
Fig. 8 illustrates the comparison between the laboratory results and the predictions made by
the second trained artificial neural network.

70
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30

e The ANN prediction

e Ex perimental results

Compressive strength (MPa)

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

The number of samples

Figure 8. The comparison between the laboratory results and the predictions made by the second
trained artificial neural network

5. CONCLUDING REMARKS

This research highlights the reliability and cost-effectiveness of using artificial neural
networks (ANNS), the EVPS metaheuristic algorithm, and the Taguchi method in predicting
concrete properties. By leveraging diverse training data, the ANNs demonstrate their ability
to accurately predict concrete properties, saving valuable time and resources in the process.
The EVPS metaheuristic algorithm further contributes to the optimization of concrete
performance, enabling the generation of superior mix designs with improved properties.
Additionally, the application of the Taguchi method complements the computational
approaches by providing a systematic and efficient experimental approach for selecting and
evaluating mix designs. By considering factors such as the J-ring test, V-funnel test, L-box
test, U-box test, slump flow test, compressive strength, and flexural strength tests, the study
ensures a comprehensive evaluation of the self-compacting properties of the concrete
samples. Together, these computational and experimental approaches offer valuable insights
into the development and optimization of self-compacting concrete mixes. The findings
emphasize the effectiveness of using ANNs, the EVPS metaheuristic algorithm, and the
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Taguchi method in achieving accurate predictions and improving concrete performance. The
research serves as a foundation for future advancements in the field, paving the way for
more efficient and reliable construction practices.
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