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ABSTRACT

The analysis and design of high-rise structures is one of the challenges faced by researchers
and engineers due to their nonlinear behavior and large displacements. The moment frame
system is one of the resistant lateral load-bearing systems that are used to solve this problem
and control the displacements in these structures. However, this type of structural system
increases the construction costs of the project. Therefore, it is necessary to develop a new
method that can optimize the weight of these structures. In this work, the weight of these
significant structures is optimized by using one of the latest metaheuristic algorithms called
special relativity search. The special relativity search algorithm is mainly developed for the
optimization of continuous unconstrained problems. Therefore, a penalty function is used to
prevent violence of the constraints of the problem, which are tension, displacement, and
drift. Also, using an innovative technique to transform the discrete problem into a
continuous one, the optimal design is carried out. To prove the applicability of the new
method, three different problems are optimized, including an eight-story one-span, a fifteen-
story three-span bending frame, and a twenty-four-story three-span moment frame. The
weight of the structure is the objective function, which should be minimized to the lowest
possible value without violating the constraints of the problem. The calculation of stress and
displacements of the structure is done based on the regulations of AISC-LRFD
requirements. To validate, the results of the proposed algorithm are compared with other
advanced metaheuristic methods.
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1. INTRODUCTION

Structural optimization has been recognized as an important tool in the design process in the
past decades. Optimization methods can be grouped by topology, size and shape of
optimization. The goal of optimization can be to minimize weight or compliance for a given
amount of material and boundary conditions. This method can be used to design engineering
structures, but it can also be used to create microstructures. Therefore, a structure is needed
to achieve this goal. However, to understand this purpose, the term "best" must be defined.
The first characteristic that comes to mind may be that the structure should be as light as
possible, that is, it should reach its minimum weight. Another "best" idea can be the
discussion of structure strength and resistance, and at the same time, it is possible to
consider another idea to make the structure resistant to buckling or instability. It is clear that
such maximization or minimization cannot be done without applying any restrictions
because a structure that is optimized without constraints will not lead to a suitable solution
and result. The parameters that usually limit the problem in the optimization of structures are
the tension of members, displacement of nodes or the geometry of the structure.

In this study, the goal is to minimize the weight of the steel moment frame structures, and
these types of problems are included in the constrained optimization group. Due to the fact
that the objective function is to minimize the weight of the whole structure, the constraints
related to tension and displacement should be taken into consideration, because by reducing
the weight too much, the stability of the structure is lost and causes irreparable financial and
life damage. The design of structures is done in the form of classical methods, gradient-
based methods, and metaheuristic methods. The classical method, known as the iterative
method, is based on evidence, which can be described as follows. (a) A specific plan is
proposed. (b) Performance-based requirements are reviewed. (c) If they are not fulfilled, the
tension is too high and a new plan should be proposed. Even if such requirements are met, it
may not lead to an optimal design, so a new design may still be required. (d) The proposed
new design is returned to step (b). In this way, an iterative process is formed in which, on a
mostly intuitive basis, a set of designs is created, the goal of which is to reach an acceptable
and convergent final design.

The gradient-based design optimization method is conceptually different from the
iterative-intuitive method. In this method, a mathematical optimization problem is
formulated, where the requirements arising from the function act as constraints, and the
concept of "as good as possible” is given a precise mathematical form. But among the
problems of these methods is the computational cost and spending a lot of time to reach the
best optimal answer. Instead, metaheuristic methods that have become remarkably popular
in the last two decades have been used for these purposes.

The mechanism of metaheuristic methods is completely innovative. Finding a
metaheuristic algorithm to provide a suitable solution that has the ability to reach the optimal
solution for complex and hard optimization problems. Finding a near-optimal search method
based on incomplete or insufficient information is essential in this real world of limited
resources, such as computing power and time. In the past three decades, several methods
have been presented by researchers, including: Simon [1], presented the optimization
algorithm based on biogeography (BBO), which is based on the distribution of vital species
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in different regions. Storn and Price [2], using the mutation process and adding the weight
difference of two population vectors to the third vector, produced a new population. Also,
Lee and Tom [3], Kennedy and Eberhart [4], who inspired the collective behavior of fish
and birds, presented the Particle Swarm Algorithm (PSO). Deriko and his colleagues [5], by
observing and being inspired by the collective behavior of ants to find the closest path to
food by a chemical called pheromone, proposed the ant colony optimization algorithm
(ACO). Caraboga and Kastrek [6] introduced the Artificial Bee Colony (ABC) algorithm by
exploiting the relationships between worker bees, guards and queen bees in finding food
sources. Chu and his colleagues [7] proposed the Cat Swarm Algorithm (CSO) by using the
behavior of cats in searching, tracking and finding prey. Also, Mirjalili and his colleagues
[8] also presented a metaheuristic algorithm called Grasshopper Optimization Algorithm
(GOA), which is inspired by the behavior of grasshoppers and the influence of their
surrounding environment. Also, the methods that follow the laws of physics and chemistry
are: Gooderzimehr et al. [9] proposed a new metaheuristic optimization algorithm based on
the physics theory of special relativity called Special Relativity Search (SRS). Kaveh and
Talatahari [10] presented the Charged System Search algorithm (CSS) based on the laws
governing Newtonian mechanics and Coulomb's laws. Hatem Lu [11] introduced the Black
Hole (BH) optimization algorithm, which is inspired by the black hole phenomenon in
physics, and in this method, the best particle is selected as a black hole, and the stars that are
too close to the black hole come close, they will be swallowed by the black hole.
Goodarzimehr et al [12] developed special relativity search to solve engineering problems.
Using two or more algorithms in a hybridized process, researchers presented new
algorithms that they use to solve problems. The purpose of this action is to identify their
strengths and weaknesses as well as establish a balance between exploration and exploitation
abilities. Some of these algorithms are: Mabhri et al. [13], developed a hybrid algorithm of
Genetics Algorithm and Particle Swarm Optimization (GA-PSO) to optimize the size and
topology of structures. Talatahri et al. [14] introduced the Teaching Learning Based
Optimization and Harmony Search (TLBO-HS) algorithm for the optimization of large-scale
structures. Also, Talaatahri et al. [15] used the hybridized algorithm of Symbiotic Organisms
Search (SOS) to optimize the size of structures. Topal et al. [16] presented the fundamental
frequency optimization of composite quadrilateral plates reinforced with graded carbon
nanotubes using an improved hybrid algorithm of particle swarm optimization and genetic
algorithm. Gooderzimehr et al. [17] presents a new hybrid algorithm of particle swarm
optimization and genetic algorithm for the optimization of spacial trusses with continuous
design variables. Dastan et al. [18] presented an optimization algorithm for frame structures
with continuous variables. Gooderzimehr et al. [19] optimized statically restrained truss
structures using the Banobo algorithm. Dehghani et al. [20] optimized the weight of moment
frames by modifying and improving the performance of the Adolescent Identity Search
algorithm. Goodarzimehr et al. [21] proposed an improved chaos game optimization
algorithm for predicting the optimal frequency of variable stiffness curved composite plate.
Goodarzimehr et al [22] investigated the generalized displacement control method and
introduced an applicable version for generalized displacement control to perform the
nonlinear analysis stage in the optimization of spatial structures. Dastan et al. [23] proposed
a new and effective algorithm called hybrid optimization based on teaching-learning and
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charging system search algorithms to solve truss optimization problems. Goodarzimehr et al
[24] proposed a weighted chaos game optimization and implemented it to optimize
engineering structures with dynamic constraints.

For the first time, Kemp et al. [25] used the Ant Colony Optimization algorithm to
optimize the discrete steel frames. Degertkin [26] used Harmony Search (HS) algorithm for
optimal design of steel frames. This method is based on the analogy between the process of
performing natural music and searching for solutions for optimization problems. Kaveh and
Talat Ahri [27] introduced the Imperialist Competitive Algorithm (ICA) for the optimal
design of skeletal structures. This method is a multi-agent algorithm where each agent is a
country that is either colonial or imperialist. These countries form empires in the search
space. Hamid Farrokhi et al [28] proposed a combination of optimization algorithms based
on firefly and biogeography for the optimal design of steel frames based on flashing patterns
and optimization based on biogeography. Salajegheh et al. [38] developed a novel version of
PSO based on first and second order gradients for optimization purposes. Salajegheh et al.
[39] hybridized two metaheuristic algorithms based on gradient direction for optimization of
structures. Salajegheh et al. [40] advanced Momentum method by PSO for optimization of
structures. Goodarzimehr et al. [41] proposed a novel swarm algorithm for optimal design of
space structures under the natural frequency constraints. Goodarzimehr et al. [42] developed
and investigated a new single objective method for optimization of mathematical and
engineering problems. Kaveh et al. [43-56] developed different advanced metaheuristic
methods for optimal design of steel frames. To obtain efficient results they developed and
investigated different versions of metaheuristic methods such as charged system search, bat
algorithm, cuckoo search algorithm, colliding body optimization, and dolphin monitoring
operator for optimal design of steel frames with different and unique structural analysis
methods. Also, they presented a comprehensive review of the application of metaheuristic
methods in structural optimization. Their results indicated that the metaheuristic methods are
efficient tools for solving this class of engineering problems.

In this work, the special relativity search algorithm has been developed to optimize the
weight of moment frame structures. The special relativity search algorithm is simulated by
the inspiration of special relativity physics. One of the most important issues in
metaheuristic algorithms is the development of an effective equation for the main step of the
algorithm. The main step equation of special relativity search includes several parameters
and can effectively measure the displacement vector of particles. In order to evaluate the
performance of this algorithm, structural problems have been optimized. To validate and
prove the superiority of the proposed algorithm, its results are compared with other
advanced metaheuristic methods.

2. SPECIAL RELATIVITY SEARCH ALGORITHM

In this section, the various parameters of the special relativity search algorithm are
completely explained. This algorithm is one of the newest metaheuristic algorithms, which
was first proposed by Gooderzimehr et al. [9] for the optimization of 83 mathematical
functions, including unimodal, multimodal, combined, and composite. After some time, by


http://dx.doi.org/10.22068/ijoce.2024.14.1.575
https://sae.iust.ac.ir/ijoce/article-1-575-en.html

[ Downloaded from sae.iust.ac.ir on 2025-10-30]

[ DOI: 10.22068/ijoce.2024.14.1.575 ]

OPTIMAL DESIGN OF TALL STEEL MOMENT FRAMES USING SPECIAL ... 65

further examining the algorithm and identifying its strengths and weaknesses, they were able
to optimize mathematical functions with bounded boundaries, structural and mechanical
problems with continuous, discrete and combinatorial variables [12]. The results show that
this algorithm has obtained better results than other advanced metaheuristic methods. Also,
the low standard deviation and high speed of convergence make its results reliable. But
research and efforts are still necessary to reach an effective method that can provide better
and more reliable results.

This algorithm has simulated a magnetic space as an feasible search space. The search
space is the space where particles can choose the optimal answer from the infinity of optimal
answers. The particles in the magnetic field are also considered as the primary population.
These particles in each step, by evaluating different points of the search space, improve their
position relative to the global optimal response. The interaction between particles in a
magnetic field is depicted in Fig. 1 and Fig. 2.

Figure 2. Produced magnetic field by a particle

where the force applied to the Q; particle is due to the magnetic field created by the Q;
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particle. Also, Q; creates a magnetic field B; at the location of Qi. The direction of B is
perpendicular to Q; and the direction of F; is towards Q; because B; is in that direction. If the
set at Q;j is accounted by Qj, the force Fj acting on Q; is equal in magnitude and opposite in
direction to Fi. This is based on Newton's third law, which must be observed. When the
particles are in opposite directions, the forces reverse and repel the allied particles. Hence,
parallel particles carrying charges in one direction attract and parallel particles carrying
charges in the opposite direction repel others. The force between particles has been known
as the Lorentz force, which includes two electric and magnetic parts (Eq. (1)).

F,=Q,[E +v,xB] 1)

vi and v;j is the initial velocity of charged particles i and j". Due to the uniformity of the
magnetic field, the electric force is ignored and only the magnetic force between the
particles is considered. Eq. (1) is rewritten as follows.

F.=Qv; B 2)

As shown in Fig. 3, the magnetic force between the particles causes the particles to move
in a circular direction. The way particles move in the magnetic force field is perpendicular to
the velocity vector, so in a circular movement, the direction changes but the velocity does
not change. The magnetic force is always perpendicular to the velocity vector and does
nothing on the particle, therefore the kinetic energy and velocity of the particle remain
constant. In such special conditions, the speed of the particles remains constant while the
direction of movement is variable. The particle moves in a circular path under the influence
of a force in the direction of the center of the circle, which is due to the radial nature of the
force. The angle between the velocity vector and the force vector is perpendicular, therefore,
a particle with relative mass m and charge Q can be considered to move with velocity v at an
angle of 90 degrees to the magnetic field. Since the Lorentz force is perpendicular to the
velocity vector, it causes the particle to start rotating in a circular path. Therefore, the
Lorentz force is defined as a radial force according to Eqg. (3).

2
FJ.:ma:m—v:Qj VB, 3)
r

By applying inverse Lorentz transformations and two important phenomena of length
contraction and time dilation, the main step of the algorithm is defined using Eq. (4).

X (t+1) = B2X, (1) +V, (t)y1- 52 + Xj(t)\/l—ﬁz 4)

After determining the new position and speed of the particles, we need to make sure that
it is in the feasible space. Therefore, the optimal answer must be between the upper and
lower bounds. Particle speed is a random value that must be updated in each iteration. In the
next step, the value of the objective function is determined and to avoid convergence to the
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local optimal point, it is necessary to update the local and global optimal vectors. For more
information about this algorithm, refer to Refs. [9] and [12]. Trajectory path of a particle
with mass m is shown by Fig. 3.

In most cases, metaheuristic algorithms are inherently incapable of solving constrained
problems, because these methods are primarily designed to solve unconstrained problems. In
this study, where the main focus is on solving bounded problems, it is necessary to use an
effective strategy to solve these types of problems. To solve the constraint problem, the
function presented in Eq. (5) is applied. For more information about this function, refer to
Ref. [37].

AY

R

Figure 3. Trajectory path of a particle with mass m in a magnetic field

F(X)=f(X) +ﬁimax(0, g, (X)) +,uimax(0, h (X)), k=12,..,n,, (5)

where, f(x) is the objective function. gk and hk the bound functions are unequal and
equal, respectively. f and u there are penalty factors.

3. DEFINITION AND FORMULATION OF STEEL MOMENT FRAMES
PROBLEM

The problems that are investigated in this work include the optimal design of skeletal
structures such as standard frame of one span-8 stories, three spans-15 stories and 24 stories
three spans. These problems have been chosen to show the reliability and applicability of the
presented method. The frame optimization problem is formulated as follows.
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Minimize f(X)

Subjectto g;(X) <0 i=12,..,m (6)

X ={x1,x2,...,xj,...,xn}TRd

where g(X) is the constraints of the problem and m represents the number of constraints. In
structure optimization problems, the main objective is usually to minimize the weight of the
structure under design constraints. The design variables are selected as the cross-sectional
area of the elements. The cross section of the element is selected from a discrete set.
Therefore, the optimization problem can be formulated as follows:

Minimize f(X)=W(A) = :\éipiAi L

. Aj(A) .
Subject to ng = -1<0, 1=12,..,Np
AU
(7)
(i)+§ Mux , Mux -1 for Rispo
Jc: = P 9 dMnx HMnx PP
Si—
( il )+( Mux , Mux -1 for R
2P #HMnx dMnx #Pn

AjeRe ={Ay AgprPeplt

where W shows the weight of structures. A, pi and L; represent the cross-sectional area,
material density and length of the i-th member, respectively. 4; and 4y are the displacement
of floor j" and the allowed displacement (which is equal to one three hundredth of the height
of the floor), respectively. N. indicates the number of members and N, indicates the number
of floors of the structure. In addition, Ae is a list of available discrete cross-sections.

The penalty method replaces a constrained optimization problem with a set of
unconstrained optimization problems. These problems are created by adding a condition to
the objective function, which includes a penalty parameter and a degree of constraint
violation. As an example, the use of penalty parameters was used in 1999 with the Rayleigh-
Ritz method in modeling rigid boundaries [31]. In this research, the penalized weight is
calculated based on the penalty function as follows:

y(x) =W ()L+p] (8)

where & represents the power of the penalty function and x is the constraint violation
function, which is:
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N, N,
H=2.0p ) + 295 ®
j i

which gpj and gsi are the violation of the displacement and drift restrictions of the floors and
the violation of the stress constraints, which have been used in accordance with the
requirements of the LRFD approach. The value of the penalty function gs; is equal, which is
formulated as follows (Eq. (10)).

_J0 if g <0
951 = gs; if g5, >0 10)

3.1. One span-8 stories moment frame

The member groups are formed in such a way that consecutive two-story columns (starting
from the base) form a column group and consecutive three-story beams (starting from the
foundation) form a separate beam group. except for the roof beam, which is just a separate
group of beams. There are a total of 8 independent size design variables in the grouping. The
geometry of this structure is shown in Fig. 4. The design variables related to the beam
element groups were selected from the W267 sections. The frame material has yield stress
Fy = 36 Ksi and modulus of elasticity E = 200 Gpa. The unbraced length for each beam is
considered to be one fifth of the length of the span. Columns are assumed to be unbraced
along their length. The optimal design of the frame is based on the requirements of AISC-
LRFD with regard to displacement and resistance limits.
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the weight of this structure in the past years are presented in Table 1 for validation. The best
optimal response obtained by SRS, ACO, GA, PSOPC and PSOPC+ACO is equal to 31.89,
31.68, 32.83, 34.21, and 32.29, respectively. As observed, SRS and ACO have obtained the
best optimal answers. In order to more accurately evaluate the results of the SRS algorithm,
a statistical analysis has also been carried out, which is presented in Table 1. This statistical
analysis is based on the Best answer, Median, Average, Worst optimal answer and Standard
Deviation. One of the important features of metaheuristic algorithms, which has made
research on these methods continue, is that the algorithm obtains stable results. The stability
of the results of an algorithm depends on the value reported by the standard deviation. The
value of standard deviation (SD) of SRS algorithm is equal to 0.0976. This shows that the
results of the proposed method are reliable. This is despite the fact that other metaheuristic
methods have not reported values related to standard deviation and other statistical
parameters. Also, to graphically display the process of convergence of the optimal responses
obtained from the statistical analysis of these results, it is drawn in Fig. 5.

Table 1. performance comparison for 8 stories moment frame

Element group (Eg) GA[29] ACO[30] PSOPC[31] PSOPC+ACO [31] SRS

Eg (1) W18x46  W21x50 W18x35 W18x35 W14x43

Eg (2) W16x31  W16x26 W14x26 W16x31 W14x43

Eg (3) W16x26  W16x26 W16x26 W14x22 W8x18

Eg (4) Wi12x16  W12x14 W14x26 W12x16 W16x31

Eg (5) W18x35  W16x26 W24x62 W21x48 W10x33

Eg (6) W18x35  W18x40 W18x35 W18x40 W14x22

Eg (7) W18x35  W18x35 W16x31 W16x31 W6x20

Eg (8) W14x26 ~ W14x22 W12x30 W16x36 W10x26
Best weight (kip) 32.83 31.68 34.21 32.29 31.89
Median (kip) N/A N/A N/A N/A 32.02
Average weight (kip) N/A N/A N/A N/A 32.39
Worst response (kip) N/A N/A N/A N/A 34.98
SD (kip) N/A N/A N/A N/A 0.0976

3.2. Three span-15 stories moment frame

The 15-story 3-span frame structure consists of 64 joints and 105 members. Columns are
grouped into ten distinct element groups, while all beams form only one group. Column
groups are formed in such a way that the outer columns of three consecutive floors (starting
from the foundation) form a separate column group and the internal columns form another
separate column group. Therefore, it has 11 distinct design variables. The geometry of this
structure is shown in Fig. 6. All design objects (groups of members) are selected from the
W267 sections. The modulus of elasticity of steel is E = 29,000 Ksi and the yield stress of
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steel is Fy = 36 Ksi. The unbraced length for each beam is considered as one-fifth of the
span length. Columns are assumed not to be combinable along their length. The length
factors of members and performance settings are similar to the 8-story 1-span frame
structure.
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Table 2: performance comparison for 15 stories moment frame

Element group (Eg) BB-BC [32] ICA[27] EWOA [33] CSS[35] SRS

Eg (1) W24x117 W24x117  W14x99 W21x147  W12x106
Eg (2) W21x132 W21x147  W27x161 W18x143  W26x146
Eg (3) W12x95 W27x84 W27x84 W12x87 W12x79
Eg (4) W18x119 W27x114  W24x104 W30x108  W24x103
Eg (5) W21x93 W14x74 W21x68 W18x76 W14x82
Eg (6) W18x97 W18x86 W18x86 W24x103  W18x86
Eg (7) W18x76 W12x96 W21x48 W21x68 W21x73
Eg (8) W18x65 W24x68 W14x68 W14x61 W18x65
Eg (9) W18x60 W10x39 W8x31 W18x35 W10x19
Eg (10) W10%39 W12x40 W10x45 W10x33 W16x36
Eg (11) W21x48 W21x44 W21x44 W21x44 W21x44
Best weight (KN) 434.54 417.45 392 412.6 391.5788
Median (KN) N/A N/A N/A N/A 394.5969
Average weight (KN)  N/A N/A 403.99 N/A 395.3113
Worst response (KN) N/A N/A N/A N/A 399.5649
SD (KN) N/A N/A N/A N/A 2.5566

The optimal answers obtained for SRS, BB-BC, ICA, EWOA and CSS, which are
391.5788, 434.54, 417.45, 392, 412.6, respectively, are presented in Table 2. SRS has
obtained the most optimal answer in this problem and has performed better than other
methods. EWOA has also performed well and is ranked second. The statistical results
calculated for SRS indicate that this algorithm extracts reliable answers. The value of SD in
solving this problem is equal to 2.5566, which is higher than the SD obtained for the
previous problem. The reason for this is the increase in the height of the floors. In addition,
in the 15-story frame problem, in addition to displacement and stress constraints, drift
constraint is also considered in order to control the displacement of the floors in the height
of the building. The SRS convergence diagram is drawn in Fig. 7. As you can see, SRS has
converged to acceptable optimal responses after 100 iterations. The diagram of drift and
stress created in the structural elements for the best optimal response is drawn in Fig. 8 and
Fig. 9, respectively.

3.3. Three span-24 stories moment frame

The 24-story, 3-span steel frame structure, shown in Fig. 10, including 168 members (96
columns and 72 beams) is studied here as a final design example. This structure is one of the
most popular examples in the field of optimizing the structures with descrete variables. All
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structural elements are classified into 20 distinct element groups (16 column groups and 4
beam groups). 16 groups are selected from 14 W sections, while 4 beam groups are selected
from all 267 W sections. The modulus of elasticity of the materials used is equal to E =
29732 ksi and the vyield stress is Fy = 33.4 ksi. The operation length coefficients are
calculated as ky > 0 for the oscillation allowed frame and the out-of-plane operation length is
determined as ky = 1.0. All the columns and beams are considered to be incapacitated in
their length. In this example, the resistance and displacement levels are obtained in
accordance with the requirements of the AISC-LRFD code

Table 3: performance comparison for 24 stories moment frame

Element group ACO [30] HS [26] ES-DE [36] FA-BBO [28] SRS

Eg (1) W30%90 W14x176 W30x90 W30x90 W8x13

Eg (2) W8x18 W14x145 W21x55 W12x14 W12x16
Eg (3) W24x55 W14x176 W24x48 W21x48 W12x14
Eg (4) W8x21 W14x132 W10x45 W6x9 W14x30
Eg (5) W14x145 W14x132 W14x145 W14x145 W14x26
Eg (6) W14x132 W14x109 W14x109 W14x120 W14x22
Eg (7) W14x132 W14x109 W14x99 W14x120 W14x30
Eg (8) W14x132 W14x82 W14x145 W14x74 W14x26
Eg (9) W14x68 W14x82 W14x109 W14x68 W14x22
Eg (10) W14x53 W14x61 W14x48 W14x53 W14x30
Eg (11) W14x43 W14x74 W14x38 W14x38 W14x26
Eg (12) W14x43 W14x48 W14x30 W14x22 W14x43
Eg (13) W14x145 W14x34 W14x99 W14x109 W14x43
Eg (14) W14x145 W14x30 W14x132 W14x109 W14x22
Eg (15) W14x120 W14x22 W14x109 W14x109 W14x34
Eg (16) W14x90 W14x22 W14x68 W14x90 W14x26
Eg (17) W14x90 W30x90 W14x68 W14x74 W14x22
Eg (18) W14x61 W10x22 W14x68 W14x68 W14x22
Eg (19) W14x30 W18x40 W14x61 W14x30 W14x34
Eg (20) W14x26 W12x16 W14x22 W14x22 W14x22
Best weight (kip) 220.47 214.86 212.39 202.90 200.0548
Median (kip) N/A N/A N/A N/A 204.9118
Average weight (kip)  229.56 222.62 N/A N/A 209.6410
Worst response (Kip) N/A N/A N/A N/A 214.9812
SD (kip) 4.56 N/A N/A N/A 4.5564
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The results of the optimal design of the three-span 24-story structure for the methods
SRS, ACO, HS, ES-DE and FA-BBO are presented in Table 3. These results are 200.0548,
220.47, 214.84, 212.39, and 202.90, respectively. The best answer in solving this problem
belongs to SRS. This structure has 24 floors and its total height is 86.4 meters. Using the
moment frame system to control the displacement and drift of this structure increases the
construction cost. Therefore, reducing the cost of building materials can be significantly
economical. The results of statistical analysis are presented in Table 3. This is while other
methods have reported only the optimal weight. The SRS convergence diagram is drawn in
Fig. 11. The drift changes in the height of the structure are plotted in Fig. 12. Also, the stress
of the structural elements for the best optimal response is drawn in Fig. 13.
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4, CONCLUSION

In order to optimize the weight of high-order moment frame structures, SRS algorithm was
used. This algorithm is one of the newest metaheuristic methods developed for optimization
purposes. The main idea of this algorithm is to simulate the movement of particles in a
magnetic field. Then, for the first time, the physics of special relativity has been used to
formulate the equations. This algorithm has recently shown good performance in solving
optimization problems of complex mathematical functions. However, good results were not
obtained in solving structural engineering problems, including high-rise moment frames.
Therefore, to solve this problem by making changes and using the penalty function, it was
adapted to the problem. To evaluate the effectiveness and performance of SRS algorithm in
solving structural problems, three steel frame problems including 8-story one-span, 15-story
three-span and 24-story three-span frames were designed and optimized. The optimal design
results obtained from this algorithm showed that this method can be used as a powerful
algorithm in the optimal design of steel frames. According to the allowed values of drift and
stress of the members, it is possible to understand the ability of the proposed algorithm in
optimization, because the drift values are close to the maximum allowed value and the stress
ratio of most of the members has values close to one. By comparing the results of the
proposed algorithm with some previous methods presented by other researchers, the results
showed that the SRS algorithm has a high capability in optimizing the weight of steel
frames. The standard deviation (Std) obtained from 50 independent executions of the
program showed that the proposed algorithm has high stability with a lower SD value
compared to other compared algorithms. This new meta-heuristic algorithm can be easily
used in other complex mathematical and optimization problems.
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