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ABSTRACT

The main objective of this paper is to optimize the size and layout of planar truss structures
simultaneously. To deal with this challenging type of truss optimization problem, the center
of mass optimization (CMO) metaheuristic algorithm is utilized, and an extensive parametric
study is conducted to find the best setting of internal parameters of the algorithm. The CMO
metaheuristic is based on the physical concept of the center of mass in space. The
effectiveness of the CMO metaheuristic is demonstrated through the presentation of three
benchmark truss layout optimization problems. The numerical results indicate that the CMO
is competitive with other metaheuristics and, in some cases, outperforms them.
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1. INTRODUCTION

One of the complex and challenging areas of structural optimization is optimum design
involving sizing and layout variables. In many cases, traditional gradient-based techniques
may not be sufficient to handle the additional complexity of these design optimization
problems. The problem's complexity arises from considering variables of different natures
simultaneously. It is necessary to optimize structural cross-sections and geometry
simultaneously for layout optimization of structures with fixed topology. In these cases, a
design space with large dimensions is encountered due to the large number of design
variables consisting of cross-sectional areas and nodal coordinates. The selection of the
cross-sections of the structural members from a discrete list of available sections leads to a
discrete design space. In such discrete layout optimization problems, constraints on member
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tensile-compressive stresses and nodal displacements increase the possibility of being
trapped in local optima [1-3]. Therefore, to solve truss layout optimization problems, it is
necessary to use powerful optimization algorithms.

Over the past few decades, numerous metaheuristic algorithms have been proposed for
structural optimization. These algorithms were inspired by different natural metaphors (such
as evolution theory, biology, and physics) and have proved to be more effective and reliable
than traditional gradient-based methods in solving complex and challenging optimization
problems [4-8]. One of the physics-based metaheuristic algorithms is the Center of Mass
Optimization (CMO) algorithm [9]. The principle behind the CMO is that mass must be
balanced around its center of mass in space. The effectiveness of CMO in solving
benchmark sizing optimization problems of truss structures and seismic performance-based
design optimization of steel moment-resisting frames has been demonstrated in recent years
compared to some metaheuristics [9-11]. Therefore, the present paper uses the CMO to
address the layout optimization problem of trusses.

This paper presents three design examples of layout optimization for trusses with 15, 18,
and 47 bars. For each design example, a sensitivity analysis is conducted to determine the
optimal values of an internal parameter of the CMO. The numerical results reveal that the
CMO is a competitive metaheuristic algorithm that, in some cases, even outperforms other
techniques proposed in the literature.

2. LAYOUT OPTIMIZATION PROBLEM FORMULATION

The objective of layout optimization of trusses is usually to minimize their weight while
taking into account certain design constraints. The design variables include the cross-
sectional areas of the members and the coordinates of nodes in the structure. These variables
are chosen from a set of discrete and continuous available values respectively. Therefore, the
optimization problem can be formulated as follows

ne
Minimize: w(X) = piA;L; (@)
1

L

g
gsi(X) = (—) -1<0,i=12,..,ne

all’ i

Subject to: d (2
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where w is the weight of the truss structure; X is the vector of design variables; p;, 4; and L;
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are the weight density, cross-sectional area and the length of the ith member, respectively;
Js, 0 and ay;; are the stress constraint, stress and allowable stress of the ith member,
respectively; g, , d and d,; are the displacement constraint, nodal displacement and
allowable displacement of the jth node, respectively; ne and nj are the numbers of members
and joints, respectively; X, and X are the vectors of cross-sectional areas of members and
joints coordinates related design variables, respectively; A, and A; are domains of cross-
sectional areas and joints coordinates, respectively and ng is the number of joints coordinates.

In this paper, the constraints of the layout optimization problem are handled using the
exterior penalty function method (EPFM) [12] in which the pseudo unconstrained objective
function is expressed as follows

() =w) (147, ) (max(0,g.0Y) ©)

where @ is the pseudo unconstrained objective function; 7, is the penalty parameter and nc
is the number of design constraints.

3. CENTER OF MASS OPTIMIZATION
CMO was proposed in [9] based on the concept of center of mass in physics. In the CMO

algorithm, a population including np randomly selected particles (X;, i € [1,np]) is
generated in design space. The mass of ith particle m; is determined as follows

()

Particles are sorted based on their mass values in ascending order and then they are
equally divided into two groups G1 and G2. The first half of the particles are put in G1 and
the others in G2. The particles in G1 are paired with their corresponding ones in G2. The
position of the center of mass and the distance between jth (j=1,..., np/2) pair of particles in
iteration t are determined as follows

m;X;(t) + mj+@Xj+@(t)
C — 2 2
X (t) =

(8)

m; + mj +nz_p
4(8) = |X;(6) = X, mp(6) 9

To switch between exploration and exploitation of the CMO algorithm, the following
controlling parameter (CP) is computed in which t,,,,, is the maximum number of iterations
and « is a constant value.
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CP(t) = exp (— tat ) (10)

max

The position of jth couple of particles is updated using the following equations

if d;j(t) > CP(t) (12)
Xt +1) = X;(6) — Ry (X£ () = X;(0)) + Ry (Xp — X;(1)) (12)
X (t+1) =X, no(t) = Rs <X,-C(t) - X j+@(t)> + Ry (Xb —X jﬂ(t)) (13)
2 2 2 2
if d;j(t) < CP(t) (14)
Xi(t+1) =X;(t) +Rs (ch (t) — Xj+nz_p(t)> (15)
X oot +1) =X, no(t) + Re <X,-C(t) - XH@(t)) (16)
2 2 2

where R; to R are vector of random numbers in [0,1]; and X, is the best solution found.

There is a mutation operator in CMO to decrease the probability of local optima
entrapment. A mutation rate mr = 0.1 is taken and in iteration t a number between 0 and 1
is randomly selected for each particle in group G1 (X; , j=1,..., np/2).

() €[0,1] (17)
X ={x1® x200) o xu0) xjm(t)}T (18)

For jth particle, if the selected random number is less than the mutation rate, one
randomly selected component will be regenerated in the design space as follows

if rj(t) <mr - x;(t) = ijl- + u(t) X (le{ — x]-LL- (19)

where u is a random number in the interval [0, 1] in iteration t; and xiLj and x{} are lower and
upper bounds of x;; in design space.

The CMO metaheuristic consists of an internal parameter, namely a which plays a
crucial role in the convergence of the algorithm. Determining the optimal value of this
parameter requires performing a sensitivity analysis. As, in the original CMO algorithm a =
5.0, in this paper, different values of 5.0, 5.5, 6.0, 6.75, 7.5, 8.5, 10.0, 12.0, 15.0, and 20 are
considered for a. Fig. 1 depicts CP over t for the different values of «a.
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Figure 1. CP — t graphs for different values of

4. NUMERICAL EXAMPLES

Three truss sizing-layout benchmark optimization problems including discrete sizing
variables and continuous configuration variables are presented to investigate the
performance of the CMO metaheuristic algorithm. The presented design examples in this
paper are a planar 15-bar truss, a planar 18-bar truss, and a planar 47-bar truss.

4.1 15-bar truss

The first design problem is a planar 15-bar truss shown in Fig. 2. A concentrated 10 Kips
load is applied to node 8 as shown in Fig. 2. The material density and the modulus of
elasticity are 0.1 Ib/in® is 10* ksi, respectively.

12 13 14 15

(o]
[{o]
120 in

5 ) 6

| 120in | 120 in | 120 in | 10 Kips
| | | |
Figure 2. 15-bar planar truss structure
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There are 23 design variables in this benchmark optimization including 15 sizing
variables (Ai, i=1,2,...,15) and 8 configuration variables (X2 = Xs; X3 = X7; Y2; Y3; Y4, Vs, Y7, Ys).
The allowable stress for all elements is+25ksi. Sizing variables are selected from the
following discrete set during the optimization process:

D = {0.111, 0.141, 0.174, 0.220, 0.270, 0.287, 0.347, 0.440, 0.539, 0.954, 1.081, 1.174,
1.333, 1.488, 1.764, 2.142, 2.697, 2.800, 3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192,
8.525, 9.300, 10.850, 13.330, 14.290, 17.170, 19.180} (in.?). In addition, side constraints for
configuration variables are as follows:

100 in. < X2 <140 in.; 220 in. < X3 <260 in.; 100 in. <y> < 140 in.; 100 in. <y3 < 140 in.;
50 in. <y24<90 in.; =20 in. <Y < 20 in.; =20 in. <y7 <20 in.; 20 in. <yg < 60 in.;

In the literature, this benchmark truss optimization problem has been dealt with genetic
algorithm (GA) [13], Firefly algorithm (FA) [14], modified harmony search algorithm
(MHSA) [15], and artificial bee colony algorithm (ABCA) [3].

In this example, 50 independent optimization runs are conducted using CMO for each
value of a, and the best results are obtained when a = 6.75. The number of particles and the
maximum number of iterations are 50 and 200, respectively. The best results obtained by
CMO are compared with those of other algorithms in Table 1. In addition, the best layout
found by the CMO is shown in Fig. 3.

Table 1: Optimal designs of 15-bar planar truss

No.  Design Variable ~ GA[13]  FA[14]  MHSA[15] ABCAI3] CMO

1 A1l 1.081 0.954 0.954 0.954 0.954
2 A 0.539 0.539 0.539 0.539 0.539
3 As 0.287 0.220 0.220 0.347 0.174
4 Aq 0.954 0.954 0.954 0.954 0.954
5 As 0.539 0.539 0.539 0.539 0.539
6 As 0.141 0.220 0.220 0.111 0.270
7 A7 0.111 0.111 0.111 0.111 0.111
8 As 0.111 0.111 0.111 0.111 0.111
9 Ao 0.539 0.287 0.440 0.539 0.174
10 Ao 0.440 0.440 0.347 0.440 0.347
11 A 0.539 0.440 0.347 0.440 0.347
12 At 0.270 0.220 0.270 0.174 0.220
13 Ass 0.220 0.220 0.270 0.174 0.220
14 Aus 0.141 0.270 0.220 0.111 0.270
15 Ass 0.287 0.220 0.220 0.347 0.174
16 X2 101.5775  114.967 135.5676 110.2086  135.2451
17 X3 227.9112  247.040 2455421 249.8193  257.1279
18 y2 134.7986  125.919 123.1303 133.5991  120.3808
19 Y3 128.2206  111.067 120.6957 111.6235  107.8293
20 Y4 54.86300  58.298 57.9313 55.1278 50.8612
21 Yo -16.4484  -17.564 -5.9742 -18.9505 -9.5547
22 V7 -13.3007 -5.821 -2.9125 3.3411 -0.1707
23 Vs 54.8572 31.465 56.3256 55.1423 50.8125
Best weight (Ib) 76.68 75.55 73.887 72.715 72.267

Analyses 8,000 8,000 5,000 18,000 10,000
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Figure 3. Optimum layout of 15-bar planar truss found by CMO

Based on the results given in Table 1, it can be concluded that the CMO algorithm is
more effective than all other algorithms in finding the best solution. Additionally, the 50
independent optimization runs produced the best weight of 72.267 kg, the worst weight of
83.937 kg, the average weight of 79.007 kg, and a corresponding standard deviation of 2.006
kg. Furthermore, Fig. 4 presents the optimum weights obtained by the CMO algorithm in 50
independent optimization runs.
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Figure 4. Optimum weights obtained by CMO for 15-bar planar truss

Fig. 5 presents the convergence curves of all optimization runs, along with the best and
mean convergence curves. It can be seen that the mean convergence curve is very close to
the best convergence curve indicating the good performance of the CMO in all the
independent optimization runs.
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Figure 5. (a) All convergence curves and (b) the best and mean convergence curves of CMO in
layout optimization of 15-bar planar truss
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4.2 18-bar truss

The second design problem is a planar 18-bar truss shown in Fig. 6. The material density
and the modulus of elasticity are 0.1 Ib/in® is 10* ksi, respectively.

20 Kips 20 Kips 20 Kips 20 Kips 20 Kips

16 i 12 ®y 8 @y 4 @i 1 @

17 15 13 11 9 7 5 3

250 in

y
éﬂ/@@xm@m@lo(@e@

| 250in | 250 in | 250in | 250in | 250 in |

Figure 6. 18-bar planar truss structure

The members of this truss structure are divided into four design groups including (1) A; =
As = Ag = A1z = Ass; (2) A2 = As = Ao = Ara = Asg; (3) A3 = A7 = Aus = Ass; and (4) As = Ag =
A1z = Ar7. Additionally, there are eight layout design variables including xs; ys; Xs; Ys; X7; Y7
X9; Yo; As a result, the layout optimization problem of the 18-bar planar truss has 12 design
variables. The allowable stresses for all elements are +25 ksi and 4EA/L? (Euler buckling
stress). Sizing design variables are selected from the following discrete set during the
optimization process: D = {2.00, 2.25,...,21.50, 21.75} (in.?). In addition, side constraints
for configuration variables are as follows: 775 in. < x3 < 1225 in.; 525 in. < x5 <975 in.;
275 in. <X7 <725 in.; 25 in. < X9 <475 in.; -225 in. <y3, ¥s, Y7, Y9 < 245 in.;

In the literature, researchers have solved this benchmark truss layout optimization
problem using simulated annealing (SA) [16], GA [13], group search optimization (GSO)
[17], and ABCA [3].

Table 2: Optimal designs of 18-bar planar truss

No. Design Variable SA [16] GA [13] GSO[17] ABCA[3] CMO
1 A1 12.25 12.75 12.25 12.50 12.00
2 A 17.50 18.50 18.25 17.75 18.00
3 As 5.75 4.75 475 5.75 5.00
4 As 4.25 3.25 4.25 3.75 4.50
5 X3 910.0 917.4475 916.9 912.9974  915.0135
6 Y3 179.0 193.7899 191.971  183.6806  188.9937
7 X5 638.0 654.3243 654.224 6427143  648.7662
8 Y 141.0 150.9436 156.1 143.8920  150.9643
9 X7 408.0 424.4821 4235 411.6918  418.3478
10 y7 91.0 108.5779 102571  97.14763  97.3077
11 Xo 198.0 208.4691 207519  200.9087  205.5284
12 Yo 24.0 37.6349 28.579 30.21906  23.0166
Best weight (Ib) 4533.24 4530.68 4538.7676  4537.064  4525.864

Analyses - 8,000 - 18,000 10,000
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The CMO is used to conduct 50 independent optimization runs for each value of a. It is
observed that the best results are obtained when « is set to 6.75. For the layout optimization,
50 particles and 200 iterations are considered. Table 2 compares the best results obtained by
CMO with other algorithms. Additionally, Fig. 7 shows the best layout found by the CMO.

.
!

Figure 7. Optimum layout of 18-bar planar truss found by CMO

The optimization results indicate that the CMO algorithm outperforms all other
algorithms in finding the best solution. Fig. 8 displays optimum weights obtained by the
CMO algorithm in 50 independent optimization runs. The best, worst, average weights and
their standard deviation are 4525.864, 4714.999, 4586.438, and 37.6838 kg, respectively.
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Figure 8. Optimum weights obtained by CMO for 18-bar planar truss

In this example, the convergence curves of all optimization runs, along with the best and
mean convergence curves are displayed in Fig. 9. It can be observed that the CMO
performed well in all independent optimization runs, as the mean convergence curve is very
close to the best convergence curve.
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Figure 9. (a) All convergence curves and (b) the best and mean convergence curves of CMO in
layout optimization of 18-bar planar truss
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4.3 47-bar truss

The third design problem of this paper involves a planar 47-bar tower shown in Fig. 10. The
material density and the modulus of elasticity are 0.3 Ib/in® is 3x10° ksi, respectively.

30in 60in 60 in

30in
30in

60 in

60 in

60 in

120 in

120 in

120in

60 in 60 in

Figure 10. 47-bar planar truss structure

Three different loading conditions are applied independently to the tower. The first
condition is a concentrated load of 6000 Ibf in the positive x-direction and another
14,000 Ibf in the negative y-direction applied to nodes 17 and 22. The second condition
is a concentrated load of 6000 Ibf in the positive x-direction and 14,000 Ibf in the
negative y-direction applied to node 17. The third condition is a concentrated load of
6000 Ibf in the positive x-direction and a concentrated force of 14,000 Ibf in the negative
y-direction applied to node 22.
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Table 3: Optimal designs of 47-bar planar truss
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No. Design Variable BB [18] GA[1] SA [16] ABCA [3] CMO
1 Aq 2.61 2.50 2.50 2.4 2.8
2 Az 2.56 2.20 2.50 2.2 2.6
3 As 0.69 0.70 0.80 11 0.6
4 Az 0.47 0.10 0.10 0.1 0.1
5 Ag 0.80 1.30 0.70 1.2 0.8
6 Aio 1.13 1.30 1.30 1.3 1.0
7 A1z 171 1.80 1.80 1.7 1.6
8 A4 0.77 0.50 0.70 0.6 0.9
9 Ass 1.09 0.80 0.90 0.8 1.0
10 Asg 1.34 1.20 1.20 1.6 1.2
11 Az 0.36 0.40 0.40 0.3 0.3
12 Az 0.97 1.20 1.30 0.9 1.0
13 Az 1.00 0.90 0.90 1.2 0.9
14 Az 1.03 1.00 0.90 1.0 0.9
15 A7 0.88 3.60 0.70 1.0 0.9
16 Ass 0.55 0.10 0.10 0.6 0.1
17 Aso 2.59 2.40 2.50 2.8 2.7
18 Az 0.84 1.10 1.00 0.4 1.0
19 As3 0.25 0.10 0.10 0.1 0.1
20 Ass 2.86 2.70 2.90 2.9 2.9
21 Ass 0.92 0.80 0.80 15 11
22 Asg 0.67 0.10 0.10 0.6 0.1
23 Ago 3.06 2.80 3.00 3.1 3.1
24 An 1.04 1.30 1.20 0.9 0.9
25 Asz 0.10 0.20 0.10 0.1 0.1
26 Ass 3.13 3.00 3.20 3.3 3.2
27 Ass 1.12 1.20 1.10 0.8 1.2
28 X2 107.76 114.0 104.0 103.6063 102.4999
29 X4 89.15 97.0 87.0 81.5008 84.0721
30 Ya 137.98 125.0 128.0 143.0525 141.7668
31 X6 66.75 76.0 70.0 67.0169 70.8394
32 Ve 254.47 261.0 259.0 252.8466 234.1873
33 X8 57.38 69.0 62.0 54.5203 54.3291
34 Ys 342.16 316.0 326.0 374.0126 347.9126
35 X10 49.85 56.0 53.0 39.8226 44.8092
36 Y10 417.17 414.0 412.0 443.9461 441.7606
37 X12 44.66 50.0 47.0 30.9474 41.0135
38 Y12 475.35 463.0 486.0 491.9941 487.9129
39 X14 41.09 54.0 45.0 36.7597 41.6433
40 Y14 513.15 524.0 504.0 510.000 518.0844
41 X20 17.90 1.0 2.0 17.6763 1.0137
42 Y20 597.92 587.0 584.0 598.8911 603.1467
43 X21 93.54 99.0 89.0 77.6661 98.0282
44 Y1 623.94 631.0 637.0 619.8911 631.3745
Best weight(lb) 1900.00 1925.79 1871.70 1871.843 1871.96

Analyses - 100,000 - 18,000 15,000
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The structural elements are divided into 27 sizing design variables as follows: Az = A1; As
= Az; As = As; A7; As = Ag; Aio; A1z = Az Arg = Aus; Ars = Ase; Ais = A1z, Azo = Ang; A2z = A,
Azq = Azs; Azs = Aczs; Azz; Azs; Aso = Azg; Asi = As2; Ass; Ass = Ass; Ase = Asz; Ass; Ago = Agg;
A1 = Asz; Asz; Ass = Aua; Ass = Asgz; Sizing design variables are selected from the following
discrete set: D={0.1,0.2,0.3,...,4.8, 4.9, 5.0} (in.?). Nodes 15, 16, 17 and 22 are fixed while
only x-coordinates of nodes 1 and 2 can be changed. Therefore, 17 layout design variables
are: Xo= - X1; X4= - X3; Ya= Y3, X6 = - X5, Y6 = Y5, X8 = - X7, Y8 = Y7; X10= - X9; Y10 = Y9, X12 = - X11;
Y12 = Y11, X14 = - X13; Y14 = Y13} X20 = - X19; Y20 = Y19; X21 = - X18; Y21 = Y1s; Xi, Yi €R. The tension
and compression allowable stresses of members are 20 and 15 ksi, respectively. in addition,
Euler buckling stress for each member is 3.96EA/L2.

In the literature, researchers have solved this benchmark truss layout optimization
problem using the branch and bound (BB) method [18], GA [1], SA [16], and ABCA [3].

The CMO is utilized to perform 50 independent optimization runs for each value of «,
and a=6.75 gives the best results, similar to the other examples. In this example, 50 particles
and 300 iterations are used. Table 3 presents the best solution for CMO and other algorithms
in the literature. Additionally, the best layout found for the tower is displayed in Fig. 11.

Figure 11. Optimum layout of 47-bar tower found by CMO


http://dx.doi.org/10.22068/ijoce.2024.14.2.581
https://sae.iust.ac.ir/ijoce/article-1-581-fa.html

[ Downloaded from sae.iust.ac.ir on 2025-10-20 ]

[ DOI: 10.22068/ijoce.2024.14.2.581 ]

LAYOUT OPTIMIZATION OF TRUSSE STRUCTURES ... 185

The optimization results indicate that the CMO algorithm outperforms GA [1] and BB
[18] and is competitive with ABCA [3] and SA [16] in finding the best solution. The
weights of all the optimal solutions found are presented in Fig. 12. The best, worst, average
weights and their standard deviation are 1871.964, 1996.998, 1934.032, and 22.451 kg,
respectively.

2020
2000 1997.0
1980
1960
1940
1920
1900
1880

1860 1872.0
0 5 10 15 20 25 30 35 40 45 50

Number of optimization run

Figure 12. Optimum weights obtained by CMO for 47-bar tower

Optimum weight (Ib)

1899.7 1899.9

Fig. 13 shows the convergence curves of all optimization runs, along with the best and
mean convergence curves are displayed. Obviously, the CMO performed well in all the
optimization runs, because the mean convergence curve is very close to the best
convergence curve.
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Figure 13. (a) All convergence curves and (b) the best and mean convergence curves of CMO in
layout optimization of 47-bar tower

5. CONCLUSIONS

This paper presented a center of mass optimization (CMO) metaheuristic algorithm for
sizing-layout optimization of planar truss structures. The CMO metaheuristic is based on the
physical concept of the center of mass in space. Recent studies have shown that CMO is
highly effective in solving various types of structural optimization problems compared to
other metaheuristics. This paper applies the CMO to deal with the layout optimization
problem of planar truss structures. The optimization process takes into account both discrete
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and continuous design variables. The cross-sectional areas of the truss are considered
discrete design variables, while the coordinates of structural joints are treated as continuous
design variables.

This paper presents three benchmark design examples of truss layout optimization
including 15, 18, and 47-bar trusses. The optimization results for the truss layout obtained
by the CMO algorithm are compared with those obtained by other optimization techniques
in the literature. The numerical analysis shows that for 15-bar and 18-bar trusses, the CMO
outperforms the artificial bee colony algorithm (ABCA) [3], genetic algorithm (GA) [13],
firefly algorithm (FA) [14], modified harmony search algorithm (MHSA) [15], simulated
annealing (SA) [16], and group search optimization (GSO) [17]. On the other hand, for the
47-bar truss, the CMO outperforms a genetic algorithm (GA) [1] and branch and bound
(BB) [18] method, and is competitive with ABCA and SA in finding the best solution. These
findings indicate that the CMO is an effective optimization algorithm for truss layout
optimization.
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