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ABSTRACT

The main objective of this study is to predict the maximum inter-story drift ratios of steel
moment-resisting frame (MRF) structures at different seismic performance levels using
feed-forward back-propagation (FFBP) neural network models. FFBP neural network
models with varying numbers of hidden layer neurons (5, 10, 15, 20, and 50) were trained to
predict the maximum inter-story drift ratios of 5- and 10-story steel MRF structures. The
numerical simulations indicate that FFBP neural network models with ten hidden layer
neurons better predict the inter-story drift ratios at seismic performance levels for both 5-
and 10-story steel MRFs compared to other neural network models.
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1. INTRODUCTION

Ensuring sufficient seismic resistance is crucial for any structure to remain available after an
earthquake. Seismic design procedures employ performance-based design to achieve this
goal [1]. These approaches involve using nonlinear structural analysis methods to evaluate
the nonlinear inelastic response of structures. However, this is a challenging design
procedure that requires a significant amount of computational effort. Structural engineers are
concerned with designing cost-efficient, reliable structures that can withstand earthquakes.
Performance-based design optimization techniques have been developed to address this
issue, and numerous studies have been conducted in this field [2-7]. Metaheuristic
algorithms are the best solution to the performance-based design optimization problem of
structures. These algorithms are based on stochastic natural phenomena and do not require

“Corresponding author: Department of Civil Engineering, Urmia University, Urmia, P.O. box 165, Iran
TE-mail address: s.gholizadeh@urmia.ac.ir (S. Gholizadeh)


http://dx.doi.org/10.22068/ijoce.2024.14.2.587
https://sae.iust.ac.ir/ijoce/article-1-587-fa.html

[ Downloaded from sae.iust.ac.ir on 2025-10-20 ]

[ DOI: 10.22068/ijoce.2024.14.2.587 ]

276 Z.H.F. Jafar and S. Gholizadeh

gradient computations, making computer implementation simple [8-12]. However, since
metaheuristic algorithms are population-based search methods, the computational burden of
performance-based design optimization using them is high because many nonlinear
structural analyses must be performed. Neural networks are one of the best alternative
solutions to reduce this burden.

In recent years, there has been an increasing interest in using artificial intelligence
techniques, particularly neural networks, to simplify complex problems. Neural networks are
computational models that imitate the structure and function of the human brain. They have
shown success in numerous research areas of civil engineering [13-17] because of their
capacity to learn from data and model complex nonlinear relationships. This paper uses
neural network models to predict the nonlinear seismic response of steel moment-resisting
frame (MRF) structures at different seismic performance levels.

Two design examples of 5-and 10-story SMFs are illustrated. Their maximum inter-story
drift ratios are predicted using feed-forward back-propagation (FFBP) neural network
models with different numbers of hidden layer neurons (5, 10, 15, 20, and 50), and the
results are compared. The results indicate that the most accurate prediction is achieved by
using ten hidden layer neurons.

2. SEISMIC RESPONSES OF STEEL MRF STRUCTURES

A seismic performance objective is a defined level of performance for a specific seismic
hazard level. To establish a performance objective, one needs to determine a level of
structural performance and the corresponding seismic hazard level. FEMA-356 [1] considers
immediate occupancy (lIO), life safety (LS), and collapse prevention (CP) performance
levels. Each objective corresponds to a probability of exceedance in 50 years. 10, LS, and
CP performance levels are assumed to correspond to a 50%, 10%, and 2% probability of
exceedance in 50 years. Here, acceleration response spectra of the hazard levels are based on
the Iranian seismic design code [18] for soil type Il in a very high seismicity region, as
shown in Fig. 1.
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Figure 1. Acceleration response spectra

In seismic performance-based design, the structural response should be evaluated by
performing nonlinear structural analysis. In this paper, a nonlinear static pushover analysis
based on the displacement coefficient method [1] is performed using the OpenSees [19]


http://dx.doi.org/10.22068/ijoce.2024.14.2.587
https://sae.iust.ac.ir/ijoce/article-1-587-fa.html

[ Downloaded from sae.iust.ac.ir on 2025-10-20 ]

[ DOI: 10.22068/ijoce.2024.14.2.587 ]

NEURAL NETWORK-BASED EVALUATION OF SEISMIC RESPONSE ... 277

platform to evaluate the nonlinear structural response. Previous studies [20-23] have
revealed that the seismic design of steel MRFs is typically dominated by maximum inter-
story drift ratios, and other constraints, such as plastic rotations of beams and columns, are
generally not active. Therefore, in this paper, only the maximum inter-story drift ratios at 10,
LS, and CP performance levels are considered the seismic responses of the steel MRFs.

3. NEURAL NETWORKS

Neural networks are highly efficient tools for solving complex and time-consuming
problems. They are popular because they can learn from external data and information
gained from past experiences. Unlike traditional problem-solving methods that follow
specific rules or use physics equations related to the issues they work on, neural networks
use their knowledge from past experiences to adapt to new problems. Their learning is not
limited to explicit and desired knowledge but also encompasses implicit information that the
designer may not know beforehand [24]. This paper employs a feed-forward multi-layer
perceptron trained by a back-propagation [24] technique. This neural network is called a
feed-forward back-propagation (FFBP) model, shown in Fig. 2.

Hidden Layer Output Layer

Output
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Figure 2. FFBP neural network model

Input

The training algorithm of the FFBP model is a gradient descent optimization algorithm
that adjusts the weights in the steepest descent direction according to the following equation:

Wipr =Wy —nV, (1)

where W, V;, and n, are the weight matrix, and the current gradient matrix learning rate,
respectively, at iteration t.

the back-propagation technique uses the Levenberg-Marquardt (LM) [24] algorithm to
approach second-order training speed without having to compute the Hessian matrix. In the
LM algorithm, the updating of the weights is achieved as follows:

Wepr =W = [JT] + al]7YJTET 2)

where ] is the Jacobian matrix, the first derivatives of the network errors to the weights); Er
Is a vector of network errors; « is a correction factor; and I is the identity matrix.

Regularization is a technique used to prevent overfitting in FFBP models. This is
achieved by modifying the performance function of the model through the addition of a
term. The added term consists of the mean of the sum of squares of the network weights.
This is expressed as [24]:
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where y and nw are the performance ratio and number of network weights, respectively; m

is the size of Ery,.

4. METHODOLOGY

In this study, FFBP models predict the seismic response of planar steel MRFs encompassing
5- and 10-story frames. The topology and member grouping details of the structures are

shown in Figs. 3 and 4, respectively.
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Figure 3. 5-story steel MRF
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Figure 4. 10-story steel MRF
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FFBP NN models are trained to predict maximum inter-story drift ratios of steel MRFs at
seismic performance levels. For the 5- and 10-story steel SMFs, the input and output vectors
of the NN models are as follows:

For 5-story steel SMF Xs ={C1 C2 ..C6 B1 B2 ... B5}T 4)
For 10-story steel SMF Xy ={C1 C2 ..C15 B1 B2 ... B10}T (5)

where X< and X;, are the input vectors of the NN models for 5 and 10-story steel MRFs,
respectively; Y is the output vector; and d,,, d,s, and d.p are the maximum inter-story drift
ratios of steel MRFs at 10, LS, and CP performance levels, respectively.

All the generated data samples for 5- and 10-story steel SMFs must satisfy geometric and
strength constraints. Some checks should be considered the geometric constraints at all the
framing joints. Fig. 5 shows a typical joint where a beam and two columns are connected,
and based on these details, the following constraints must be met:

&

b’bol =

C

Figure 5. A typical framing joint

by < bkt @)
be < g (8)
he < hE )

As the strength constraints, each structural element should satisfy the following
constraints for the non-seismic load combinations [25]:

F b <0,2 hu + M, <1,0 (10)
or , - =~ 1,
(Z)cpn ZQ)an Q)an
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where P, is the required strength; P, is the nominal axial strength; @, and @, are the
resistance factors; M,, and M,, are the required and nominal flexural strengths, respectively.
If a structure passes the above checks, its seismic responses are evaluated by performing
a nonlinear static pushover analysis based on the displacement coefficient method. Fig. 6
illustrates a detailed flowchart of dataset generation for training and testing the NN model.
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Figure 6. Dataset generation flowchart

The NN model’s prediction accuracy evaluation metrics, including Mean Absolute
Percentage Error (MAPE), Root Mean Square Error (RSME), and Coefficient of
Determination (R-square or R?) used in this study, are as follows:

100 |t; — ¥
Mean Absolute Percentage Error ~ MAPE = z | . | (12)
ns P i
1 ns
Root Mean Square Error RMSE = —Z(ti —y,)? (13)
ns
i=1

i=1(t; —yi)°

Coefficient of Determination R?=1-=—"— """
?zsl(ti - E)Z

(14)
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where ns is the number of samples; t; is the ith target maximum inter-story drift; y; is ith
predicted maximum inter-story drift; and ¢ is the mean of target maximum inter-story drift.

In order to compare the efficiency of the trained FFBP models, average MAPE
(AMAPE), average RMSE (ARMSE), and average R? (AR?) of predicted inter-story drifts at
10, LS, and CP performance levels in both the training and testing phases are calculated as
follows.

aarE,, - (MAPEG,,) . inins 2+ (MAPEq,,), pc1ing DL = 10.LS.CP )
ARMSEdPL _ (RMSEdPL)tTaining;- (RMSEdPL)testing PL — IOLS C-P (16)
2 2
2 (RdPL)training + (RdPL)testing PL = 10.LS.CP (17)
AdeL =

2

This paper considers five FFBP NN models with 5, 10, 15, 20, and 50 hidden-layer
neurons for each design example. These NN models are denoted by FFBP5, FFBP10,
FFBP15, FFBP20, and FFBP50, respectively.

5. NUMERICAL EXAMPLES

The dead load of 2500 kg/m and and live load of 1000 kg/m are applied to all beams. The
modulus of elasticity and yield stress of materials are E = 210 GPa and Fy = 235 MPa,
respectively. The constitutive law is bilinear with a pure strain hardening slope of 3% of the
elastic modulus. The sections of beams and columns are selected from the W-shaped
sections listed in Table 1.

Table 1: Available W-shaped sections

Columns Beams

No. Profile No. Profile No. Profile No. Profile

1 W14x48 13  W14x257 1 W12x19 13 W21x50
2 W14x53 14 W14x283 2 W12x22 14 W21x57
3 W14x68 15 W14x311 3 W12x35 15 W24x55
4 W14x74 16  W14x342 4 W12x50 16 W21x68
5 W14x82 17 W14x370 5 W18x35 17 W24x62
6 6
7 7
8 8
9 9

W14x132 18 W14x398 W16x45 18 W24x76
W14x145 19  W14x426 W18x40 19 W24x84
W14x159 20 W14x455 W16x50 20 W27x94
W14x176 21  W14x500 W18x46 21  W27x102
10 W14x193 22  W14x550 10 W16x57 22 W27x114
11 Wi14x211 23  W14%605 11 Wwi18x50 23 W30x108
12 WI14x233 24  W14%665 12 W21x44 24  W30x116
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5.1 Five-story SMF

To train and test the NN models, a data set including 400 samples is randomly generated.
The components of output vector are shown in Figs. 7 to 9.
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Figure 7. Maximum inter-story drift ratios at 10 level for 5-story steel MRF

3.80

3.30

ds5(%)
N
(o]
o

|
230 ‘l“ 'lxlll‘ l’[wl']’ l , ,"l' M’Lﬂ'“h ," "lu "'th 'l h |]l“ll.v ‘l"l l’l ,

0 50 100 150 200 250 300 350 400
Sample No.

Figure 8. Maximum inter-story drift ratios at LS level for 5-story steel MRF
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Figure 9. Maximum inter-story drift ratios at CP level for 5-story steel MRF
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The FFBP5, FFBP10, FFBP15, FFBP20, and FFBP50 NN models are trained and tested
and the results are reported in Tables 2 to 6, in terms of MAPE, RMSE and R2.

Table 2: Performance evaluation of FFBP5 for 5-story steel MRF

Phase Metric

Maximum inter-story drift ratio (%)

dio dis dcp
Training MAPE 3.4205 2.4947 2.5190
RMSE 0.0342 0.0743 0.1097
R? 0.8426 0.9085 0.9136
Testing MAPE 4.4284 3.8692 3.9789
RMSE 0.0459 0.1147 0.1813
R? 0.6266 0.7163 0.7052

Table 3: Performance evaluation of FFBP10 for 5-story steel MRF

Maximum inter-story drift ratio (%)

Phase Metric e s o
Training MAPE 3.1527 1.7704 1.5688
RMSE 0.0316 0.0513 0.0666
R? 0.8658 0.9563 0.9681
Testing MAPE 3.3533 2.8420 2.8230
RMSE 0.0325 0.0797 0.1200
R? 0.8124 0.8631 0.8708

Table 4: Performance evaluation of FFBP15 for 5-story steel MRF

Phase Metric

Maximum inter-story drift ratio (%)

dIO dLS dcp
Training MAPE 2.9308 1.3359 1.0111
RMSE 0.0291 0.0390 0.0435
R? 0.8861 0.9748 0.9863
Testing MAPE 3.5865 3.3212 3.6524
RMSE 0.0358 0.0977 0.1612
R? 0.7721 0.7944 0.7672

Table 5: Performance evaluation of FFBP20 for 5-story steel MRF

Maximum inter-story drift ratio (%)

Phase Metric o dis don
Training MAPE 2.7863 1.0404 0.6043
RMSE 0.0277 0.0307 0.0257
R? 0.8965 0.9843 0.9952
Testing MAPE 3.7745 4.,3199 4.6736
RMSE 0.0395 0.1273 0.2028
R? 0.7225 0.6509 0.6315
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Table 6: Performance evaluation of FFBP50 for 5-story steel MRF

Maximum inter-story drift ratio (%)

Phase Metric e 0 o
Training MAPE 1.0221 0.2032 0.0928
RMSE 0.0106 0.0060 0.0042
R? 0.9848 0.9993 0.9998
Testing MAPE 5.6251 5.9895 5.9659
RMSE 0.0568 0.1729 0.2381
R? 0.4270 0.3558 0.4921

Figs. 10 to 12 show AMAPE, ARMSE, and AR? for the predicted inter-story drift ratios at
10, LS, and CP performance levels, respectively.

AMAPE
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Inter-Story Drift Ratio

Figure 10. AMAPE of inter-story drift ratios predicted by NN models for 5-story steel SMF
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Figure 11. ARMSE of inter-story drift ratios predicted by NN models for 5-story steel SMF
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Figure 12. AR? of inter-story drift ratios predicted by NN models for 5-story steel SMF
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The results show that:

For dio, the AMAPE of the FFBP10 model is 17.11%, 0.17%, 0.84% and, 2.12% less
than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.

For dis, the AMAPE of the FFBP10 model is 27.52%, 0.96%, 13.95% and, 25.52%
less than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.

For dcp, the AMAPE of the FFBP10 model is 32.41%, 5.83%, 16.79% and, 27.51%
less than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.

For dio, the ARMSE of the FFBP10 model is 19.97%, 1.23%, 4.61% and, 4.89% less
than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.

For dis, the ARMSE of the FFBP10 model is 30.69%, 4.17%, 17.09% and, 26.77%
less than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.

For dcp, the ARMSE of the FFBP10 model is 35.88%, 8.84%, 18.34% and, 22.99%
less than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.

For dio, the AR? of the FFBP10 model is 14.22%, 1.21%, 3.66% and, 18.87% greater
than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.

For ds, the AR? of the FFBP10 model is 11.98%, 2.84%, 11.26% and, 34.26% less
than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.

For dcp, the AR? of the FFBP10 model is 13.59%, 4.87%, 13.04% and, 23.26% less
than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.

The numerical results demonstrate that the FFBP NN model with 10 hidden layer neurons
outperforms the other models in predicting the inter-story drift ratios at 10, LS, and CP
seismic performance levels.

Figs. 13 and 14 display the Absolute Percentage Error (APE) of the predicted maximum
inter-story drifts, along with the regression results during the training and testing phases for
the NN model with the best prediction accuracy.
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Figure 13. APEs of the predicted inter-story drifts using 10 neurons for 5-story steel MRF


http://dx.doi.org/10.22068/ijoce.2024.14.2.587
https://sae.iust.ac.ir/ijoce/article-1-587-fa.html

[ Downloaded from sae.iust.ac.ir on 2025-10-20 ]

[ DOI: 10.22068/ijoce.2024.14.2.587 ]

286 Z.H.F. Jafar and S. Gholizadeh

Training Data Testing Data
1.25 T T 1.25 T T
9 1+ (o) 808) Q 1k
® ®
a a o ©
(2] (2]
9 075 % 075
2 2
e fu
0.5 . L 0.5 . .
0.5 0.75 1 1.25 0.5 0.75 1 1.25
Predicted ISD at 10 (%) Predicted ISD at 10 (%)
Training Data Testing Data
3.5 T 3.5 T
» 3r o 3 Q
| -
® ® 040
a 25f a 25
2] 2]
S 2f S 2r
© ]
- -
1.5 - . - 15 L . .
1.5 2 25 3 3.5 1.5 2 25 3 3.5
Predicted ISD at LS (%) Predicted ISD at LS (%)
Training Data Testing Data
5 T T 5 T T )
<45 S 45t
o o
(&) o
w® 4T w® ¢ Oge” 0
[=] a fo)
N 35¢ N 35+
® ®
2 3t 2 3 o
u fu
25 . . . . 25 . . . .
25 3 3.5 4 4.5 5 25 3 35 4 4.5 5
Predicted ISD at CP (%) Predicted ISD at CP (%)

Figure 14. Prediction of inter-story drifts using 10 neurons for 5-story steel MRF

5.2 Ten-story SMF

A data set including 600 samples is randomly generated to train and test the NN models. The
components of the output vector are shown in Figs. 15 to 17.
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Figure 15. Maximum inter-story drift ratios at 10 level for 10-story steel MRF
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Figure 16. Maximum inter-story drift ratios at LS level for 10-story steel MRF
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Figure 17. Maximum inter-story drift ratios at CP level for 10-story steel MRF

600

The FFBP5, FFBP10, FFBP15, FFBP20, and FFBP50 NN models are trained and tested
to predict the inter-story drift ratios at 10, LS, and CP seismic performance levels for the 12-
story steel frame. The obtained results are reported in Tables 7 to 11 in terms of MAPE,
RMSE, and R2.

Table 7: Performance evaluation of FFBP5 for 10-story steel MRF

Maximum inter-story drift ratio (%)

Phase Metric o e o
Training MAPE 3.3977 1.5321 1.3050
RMSE 0.0428 0.0593 0.0773
R? 0.6657 0.9412 0.9535
Testing MAPE 4.0157 2.3134 2.1223
RMSE 0.0501 0.0930 0.1244
R? 0.5700 0.8316 0.8567
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Table 8: Performance evaluation of FFBP10 for 10-story steel MRF

Phase Metric

Maximum inter-story drift ratio (%)

dio dis dcp
Training MAPE 2.9572 0.9708 0.6961
RMSE 0.0364 0.0378 0.0415
R? 0.7590 0.9762 0.9866
Testing MAPE 3.4241 2.3648 2.1793
RMSE 0.0424 0.0946 0.1317
R? 0.6919 0.8256 0.8393

Table 9: Performance evaluation of FFBP15 for 10-story steel MRF

Maximum inter-story drift ratio (%)

Phase Metric e s don
Training MAPE 2.8523 0.6894 0.3819
RMSE 0.0350 0.0273 0.0231
R? 0.7769 0.9874 0.9958
Testing MAPE 3.8279 3.2561 2.9862
RMSE 0.0472 0.1265 0.1778
R? 0.6185 0.6882 0.7071

Table 10: Performance evaluation of FFBP20 for 10-story steel MRF

Maximum inter-story drift ratio (%)

Phase Metric do e don
Training MAPE 2.2760 0.6107 0.2892
RMSE 0.0275 0.0239 0.0173
R? 0.8622 0.9904 0.9976
Testing MAPE 3.9181 3.7783 3.7052
RMSE 0.0478 0.1497 0.2172
R? 0.6087 0.5635 0.5629

Table 11: Performance evaluation of FFBP50 for 10-story steel MRF

Maximum inter-story drift ratio (%)

Phase Metric o e don
Training MAPE 6.48e-06 1.23e-06 1.13e-06
RMSE 8.01e-08 4.78e-08 6.47e-08
R? 1 1 1
Testing MAPE 5.6618 4.0869 3.7060
RMSE 0.0741 0.1714 0.2278
R? 0.0595 0.4278 0.5194

Figs. 18 to 20 show AMAPE, ARMSE, and AR? for the predicted inter-story drift ratios at

10, LS, and CP performance levels, respectively.
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Figure 18. AMAPE of inter-story drift ratios predicted by NN models for 10-story steel SMF
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Figure 19. ARMSE of inter-story drift ratios predicted by NN models for 10-story steel SMF
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Figure 20. AR? of inter-story drift ratios predicted by NN models for 10-story steel SMF

The results show that:

e For dio, the AMAPE of the FFBP20 and FFBP50 NN models is 2.93% and 11.28%
less than the FFBP10 model. The AMAPE of FFBP10 is 13.92% and 4.47% less than
the FFBP5 and FFBP15 models, respectively.

e For d.s, the AMAPE of the FFBP10 model is 13.26%, 15.46%, 24.00% and, 18.38%
less than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.

e For dcp, the AMAPE of the FFBP10 model is 16.10%, 14.63%, 28.01% and 22.41%
less than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.

e For dio, the ARMSE of the FFBP10 model is 15.18% and 4.14% less than the FFBP5
and FFBP15 and 4.65% and 6.34% greater than the FFBP20 and FFBP50 models,
respectively.

e For ds, the ARMSE of the FFBP10 model is 13.07%, 13.91%, 23.73% and, 22.75%
less than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.
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Figure 22. Prediction of inter-story drifts using 10 neurons for 5-story steel MRF
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e For dcp, the ARMSE of the FFBP10 model is 14.13%, 13.79%, 26.14% and, 23.97%
less than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.

e For dio, the AR? of the FFBP10 model is 17.41%, 3.98% and, 36.94% greater than
the FFBP5, FFBP15 and FFBP50 NN models, respectively. In addition, the AR? of
the FFBP10 model is 1.36%, less than the FFBP20 NN model.

e For dis, the AR? of the FFBP10 model is 1.64%, 7.53%, 15.95% and, 26.19% less
than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.

e For dcp, the AR? of the FFBP10 model is 0.87%, 7.22%, 17.00% and, 20.17% less
than the FFBP5, FFBP15, FFBP20 and FFBP50 NN models, respectively.

The numerical results demonstrate that the FFBP NN model with 10 hidden layer neurons
outperforms the other models in predicting the inter-story drift ratios at 10, LS, and CP
seismic performance levels.

Figs. 21 and 22 display the APE of the predicted maximum inter-story drifts, along with
the regression results during the training and testing phases for the NN model with the best
prediction accuracy for 10-story steel MRF.

6. CONCLUSIONS

The primary goal of this paper is to develop a neural network-based approach for assessing
the seismic responses of steel moment-resisting frames. The maximum inter-story drift
ratios at 10, LS, and CP seismic performance levels are considered the desired seismic
responses of the frames. This involves using a feedforward-backpropagation neural network
instead of pushover static nonlinear analysis. Two numerical examples of 5- and 10-story
steel MRFs are illustrated, and datasets containing 400 and 600 samples are randomly
generated for them, respectively. Five feedforward-backpropagation neural network models
with 5, 10, 15, 20, and 50 hidden-layer neurons are considered for each illustrative example.
Notably, the model with 10 hidden layer neurons consistently outperforms the other models
in accurately predicting inter-story drift ratios at different performance levels, as confirmed
by the numerical results of both examples.
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