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ABSTRACT

Despite the advantages of the plastic limit analysis of structures, this robust method suffers
from some drawbacks such as intense computational cost. Through two recent decades,
metaheuristic algorithms have improved the performance of plastic limit analysis, especially
in structural problems. Additionally, graph theoretical algorithms have decreased the
computational time of the process impressively. However, the iterative procedure and its
relative computational memory and time have remained a challenge, up to now. In this
paper, a metaheuristic-based artificial neural network (ANN), which is categorized as a
supervised machine learning technique, has been employed to determine the collapse load
factors of two-dimensional frames in an absolutely fast manner. The numerical examples
indicate that the proposed method's performance and accuracy are satisfactory.
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1. INTRODUCTION

One of the powerful structural analysis methods, especially for ductile materials, is Plastic
Analysis (PA). The basis of almost all the analytical methods employed for PA is the
maximum and minimum principles [1]. Among minimum principal methods, the most
frequent one is the combination of elementary mechanisms. This method has developed by
Neal and Symonds, first [2]-[4].

In 1951, due to Charnes and Greenberg’s effort [5], the PA problem of frames with rigid

*Corresponding author: School of Civil Engineering, Iran University of Science and Technology, Tehran-
16, Iran
TE-mail address: alikaveh@iust.ac.ir (A. Kaveh)


http://dx.doi.org/10.22068/ijoce.2023.13.2.546
https://sae.iust.ac.ir/ijoce/article-1-546-en.html

[ Downloaded from sae.iust.ac.ir on 2025-10-23 ]

[ DOI: 10.22068/ijoce.2023.13.2.546 ]

144 A. Kaveh, M.R. Seddighian, and N. Farsi

joints started to solve. Linear Programming (LP) was the main tool employed by them.
Heyman [6] utilized simple plastic theory to investigate the minimum weight of rectangular
two-dimensional frames under different loading conditions. The principal theory in his study
was the Foulkes Theory. Further progress in this field is attributed to Watwood [7], Baker
and Heyman [8], Jennings [9], Thierauf [10], Horne [11], and Gorman [12].

Despite the advantages of the combination of elementary mechanisms, this method
suffers from some drawbacks. These drawbacks prevent it to be considered a frequent
analysis tool. Among these drawbacks, the extensive number of mechanisms that have to be
combined for evaluating the collapse load factor, impose an intense computational cost,
either in time or memory, to the problem solver. Therefore, some novel approaches, such as
graph theory, and modern algorithms, such as metaheuristics, have been used in this manner.
For the first time, Kaveh [13] has employed graph theoretical concepts for flexibility
analysis of structures. In this manner, he has improved cycle bases in flexibility analysis for
an efficient and accurate analysis of structures. Using this novel methodology,
Mokhtarzadeh and Kaveh [14] presented an efficient graph theoretical method for optimal
plastic analysis and design of frames. Kaveh and Khanlari [15] employed the genetic
algorithm to estimate the collapse load factor of planar frames. Kaveh and Rahami [16] have
utilized Genetic Algorithm for the structural analysis using force method. Palizi and Saedi
Daryan [17], presented a comparative study between different metaheuristic algorithms for
plastic analysis of braced frames. an Automatic method for evaluation of plastic collapse
conditions of planar frames has been presented by Greco et al. [18]. Smail and Laid [19],
proposed a second-order analysis of plane steel structures using the Rankine-Merchant-
Wood approach. Kaveh et al. [20] utilized the ant colony system and Charge System Search
(CSS) algorithms for optimal PA. Colliding Bodies Optimization (CBO) and its enhanced
version (ECBO) have been employed by Kaveh and Ghafari [21] for these structures. The
rectangular grid’s collapse load factor has been studied by Kaveh et al. [22]. Also, Kaveh
and Jahanshahi [23], developed a metaheuristic-based framework for Plastic Limit Analysis
(PLA) of frames.

Although all the above-mentioned efforts have been considered crucial studies in this
field and they improved some computational drawbacks of PA, the intense computational
cost of the plastic analysis, due to their iterative approaches has remained up to now.
Therefore, it seems that a new computational method is required to be added to this field. In
this paper, a metaheuristic-based artificial neural network (ANN), which is categorized as a
supervised machine learning technique, has been employed to determine the collapse load
factors of two-dimensional frames in an absolutely fast manner. The numerical examples
indicate that the proposed method's performance and accuracy are satisfactory.

The paper is organized as follows. Section 2 introduces the formulation of the PA,
including the generation of elementary mechanisms, determination of the collapse load
factor, and combination of elementary mechanisms. An introduction to the metaheuristic
algorithms and artificial neural networks is presented in Section 3. Section 4 is dedicated to
the proposed new algorithm and its numerical validations. Finally, Section 5 concludes the
study.

2. PLASTIC ANALYSIS
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One of the computational methods to find a set of independent mechanisms has been
developed by Watwood [7]. However, this method also calculates joint mechanisms which
causes some extra computational overhead. Also, the axial deformation can be neglected due
to the effects of rotational degrees of freedom on the creation of the plastic hinges. Hence,
the modified method proposed by Pellegrino and Calladine [24] and Deeks [25], may be
employed.

By indicating the elongation of each member in terms of its displacements in global
coordinates, i.e., two displacement components for each joint or node, Eg. 1 can be obtained.

e=(d, —dxj)COSOH(dyi —dyj)sina (1)
Using matrix notation, Eq. 1 leads to Eq. 2.
e=Cd 2

where d is the nodal displacement vector, C is the compatibility matrix, and e is the
elongation vector.

In an acceptable mechanism, elements do not elongate. Therefore, Eq. 3, should be
solved as the principal problem system of equations.

e=Cd (3)

In Eq. 3, the number of columns of matrix C exceeds the number of rows. The difference
indicates the number of independent mechanisms. Therefore, Eq. 3 can be decomposed into

Eq. 4.
d| (0
[I,Cd]{dd}—{o} (4)

Rearrangement of the Eq. 4, leads to Eq. 5.
d' =-c%d 5)

The selection of the dependent vectors for dd is the selection of the independent
mechanisms. Therefore, the calculation of the di in Eq. 5, leads to a solution to Eq. 3.

The virtual work theorem should be employed to calculate the collapse load factor. The
obtained rotations and displacements can be used for the calculation of the internal and
external works. Therefore, the collapse load factor can be obtained using Eq. 6.
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ﬂ“c — Wlntenral (6)
Wexternal

Finally, for obtaining a logical collapse mechanism, the elementary mechanisms should
be combined. This procedure can be considered an optimization problem. The objective is to
combine elementary mechanisms in a manner that the collapse load factor will be
minimized. For this aim, the elementary mechanisms and their corresponding coefficient are
considered the decision variables. At least, the problem can be solved using optimization
methods, such as meta-heuristic algorithms.

3. SOFT COMPUTING METHODS

This section is dedicated to soft computing method details. Firstly, metaheuristic algorithms
have been introduced. Due to the application of the Enriched Firefly Algorithm (EFA) in
this paper, the details of this method are presented in the following. Finally, the artificial
neural networks (ANNs) formulation follows them.

3.1. Metaheuristic Algorithms

In these times, those types of computational algorithms, which are called meta-heuristics
have gained wide usage in engineering, applied mathematics, economics, medicine, and
other fields. The first category of meta-heuristic algorithms is the nature-inspired one. Some
behavior of Animals such as migrating, hunting, flocking, and foraging procedures are very
suitable for computational simulation. Therefore, these behaviors can be studied and
implemented as swarm intelligent rules to develop an appropriate meta-heuristic algorithm.
For instance, one of the most powerful meta-heuristic algorithms that are known as Particle
Swarm Optimization or PSO is inspired by the social behavior of birds flocking or fish
schooling [26]. As another example, Water Strider Algorithm (WSA) mimics the life cycle
of water strider bugs and their intelligent ripple communication [27]. other types of meta-
heuristic algorithms are developed according to the physical laws such as Black Holes
Mechanics Optimization (BHMO) algorithm [28] and Charged System Search (CSS)
algorithm [29]. Also, there are some meta-heuristics based on mathematical models. The
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm is one of them [30].
Finally, some meta-heuristic algorithms such as Teaching-Learning Based Optimization
(TLBO) algorithm [31] and Tug of War (TOW) algorithm [32] are developed based on
human behaviors.

In this paper, one of the recently developed meta-heuristic algorithms, known as the
Enriched Firefly Algorithm (EFA), is utilized to improve the performance of artificial neural
networks (ANNS). Therefore, FA and its enriched version are explained in the following.

3.2. Firefly Algorithm and its Enriched Version

The basic version of the Firefly algorithm (FA) was presented by Yang [33] and has been
applied successfully in either continuous or discrete optimization problems. Although it is
proven that FA is a better algorithm than many other optimization meta-heuristic algorithms,
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there are some drawbacks to its computational processes. For instance, Khadwilard et al.
[34] indicated that the FA could not find the optimum solution to some problems and was
trapped in the local optima. Therefore, many adaptive, hybrid, chaotic, improved, and
enhanced versions of basic FA have been developed so far.

For the implementation of the FA, there are two critical considerations. First, the
variation of light intensity, and second, the formulation of attractiveness. The appropriate
assumption, for simplicity, is that the attractiveness of a firefly is indicated by its brightness
which is, in turn, mapped to the encoded cost function. in minimization cases, the brightness
of a firefly at location x can be selected approximately as Eq. 7.

1
I(x) = 0] (7

where 1(x) is the brightness, f(x) is the objective function, and x is the position vector of the
firefly. Therefore, if the cost function has a higher value in this type of problem, the
corresponding firefly will have less brightness.

The variations of light intensity and attractiveness are monotonically reducing functions
being as the light intensity and the attractiveness reduces, the distance from the source
increases, and vice-versa. This procedure is formulated as Eqg. 8.

Iy
1+ yr?

I(r) = (8)

where I(r) is the light intensity, r is the firefly distance, and lo is the light intensity at the
source. Since the air absorbs part of the light and makes it weaker, the air absorption is
modeled mathematically by the light absorption coefficient y.

In many problems and applications, the combined effect of both can be approximated
using the Gaussian form as formulated in Eq. 9.

I(r) = Ioe‘yr2 9

The attractiveness of a firefly (f) is proportional to its brightness (or light intensity).
can be defined as Eq. 10.

B(r) = Boe """ (10)

where fo is the attractiveness at r = 0.
Finally, the ith firefly movement (exploration and exploitation) towards the brighter and
more attractive one j is modeled using Eq. 11.

x;(t) = x;(t) + Bor_wff (xj — x;) + a(rand — 0.5) (11)
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where o is the randomization parameter, rand is a random number uniformly distributed
between 0 and 1, and rij is the Euclidean distance between fireflies i and j.

The Enriched version of the basic Firefly Algorithm or EFA is proposed by Kaveh and
Seddighian [35]. As they mentioned in their paper, some computational steps in the firefly
algorithm increase its computational complexity. The first is to calculate the Euclidean
distance between each pair of fireflies. The corresponding computational complexity to this
process is equal to O(N?), where N is the number of fireflies. Therefore, the first enrichment
is devoted to linearizing this step. There are many programming tricks to handle this
drawback. The authors of the EFA paper [35] propose to define a radius & as Eq. 12.

§ = Atmn (12)

where A is the region coefficient corresponding to the problem type, m and n are the best and
worst fireflies in each iteration, respectively. Also, 4 can be decreased linearly in each
iteration.

Herein, it is possible to select those fireflies that are in a feasible circular region of radius
& in which the best firefly in each iteration is in the center. Using this trick, the algorithm's
computational complexity will be converted to T<O(N), where N is the total number of
fireflies, and T is the number of fireflies within the feasible region.

The second change in the firefly algorithm that seems to make it more effective is to
modify the position vector dimension. Each firefly position vector contains N variables,
where N is the number of decision variables utilized to obtain the Euclidean distance
between two fireflies. It is proposed that the corresponding value of the objective function
with each firefly be added to the vector position. Therefore, each position vector includes the
N+1 variable. This minor enrichment on the vector position improves the convergence rate
of the algorithm impressively.

Finally, the last enrichment applied to the basic version of FA is to change from the
Euclidean to the Mahalanobis distance. Since the deviation from the best cost is important, it
is essential to consider how each variable indicates similar behavior to the best objective.
This tendency can be formulated mathematically using the covariance matrix.

In statistics and probability theory, covariance measures how much two random variables
change together. A positive covariance means that the two variables tend to move along,
while two variables move inversely if and only if their relative covariance is negative. In the
case of two jointly distributed real-valued random variables, the covariance of X and Y are
defined by Eq. 13.

cov(X,Y) = E[(X —EX)),(Y —E(Y))] (13)

where E(X), and E(Y) is the expected values of X and Y, respectively.
The covariance matrix is a square and symmetric matrix given by Eq. 14.
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Cij = COU(Xi,X]'),C € Rd (14)

where d is the number of problem dimensions.
For example, for two-dimensional problems, it can be written as Eq. 15.
_ [cov(X, X) cov(X, Y)] (15)
"~ eov(Y,X) cov(Y,Y)

where C is the covariance matrix.

The Mahalanobis distance is a measure of the distance between points or vectors. It can
be stated that the Mahalanobis distance indicates dissimilarity measured between two
vectors. The Mahalanobis distance can be formulated as Eq. 16.

dx,y) =/(x—y)C(x—y) (16)

where C is the covariance matrix between position vectors x and y. If the covariance matrix
is identity, then the Mahalanobis distance will be equal to the Euclidean distance.

The results obtained from the mathematical benchmark functions and other structural
ones indicate that the last enrichment increases the convergence rate of the algorithm
efficiently.

3.3. Artificial Neural Networks

Nowadays, Artificial Neural Networks (ANNSs) are utilized widely to simulate complex
systems such as mechanical, Medical, industrial, and many others. In this computational
method, the considered variables, have been imported into the system as inputs. The labeled
results corresponding to each input have been considered as the network targets. Therefore,
this method is categorized as the supervised machine learning method. An activation
function tries to simulate a network to convert inputs to targets. The results of the activation
function and its weights initially are not compatible with the targets. Therefore, there is an
error between outputs (results of the activation function and its weights) and targets should
be neglected. Hence, an optimization problem is utilized to minimize this simulation error.
Different activation functions, number of layers, optimization algorithms, and other features
make different architectures of an ANN.

4. PROPOSED METHOD AND NUMERICAL VALIDATIONS

As introduced before, the computational cost, either in memory or in time, of the
conventional methods for plastic analysis is absolutely considerable. Therefore, it is vital to
propose a new efficient method for this type of problem.

For this aim, it is proposed in this paper to employ an ANN to detect the collapse
mechanism of frames and their corresponding load factor. The procedure is presented in the
following.
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Firstly, a dataset of the collapse mechanism and its corresponding load factors are
generated. For this aim, an implemented python code, based on the Hinge-by-Hinge method
[36], is used to create and analyze about 3000 portal frames including different support
conditions, geometry properties, loading conditions, and element connectivity. These
features are considered as the ANN inputs and the computed collapse mechanism and load
factors are assumed as its targets.

Due to the enormous dataset, the optimization procedure of the ANN remains a time-
consuming problem. For the treatment of this issue, the EFA method has been employed for
optimization. Finally, the trained ANN can be used to detect the collapse mechanism of new
frames, in less than 1 second. This efficiency is validated via the following numerical
examples. There are no specific units for each example. Any consistent unit system can be
employed for simulation.

4.1. Example 1: Two-Bay, Three-Story Frame

The first example, as shown in Fig. 1, is a two-bay, three-story frame that is considered a
famous benchmark problem. The geometry and load conditions are passed into the trained
ANN and the collapse mechanism and load factor are obtained. Fig. 2 comprises the real
mechanism [23] and the obtained one together.

-2.00 -1.00
400 600 |  6.00 600 |+  6.00 _
14 15 16 17 18
g g gl g
() [ e
-4.00 -5.00
200 9.00 | 9.0 9.00 | 9.00 1
9 10 11 12 13
[—] [—] (=] [—]
3 = 3| 3
s X &)
-6.00 -8.00
sooo 1200 | 12.00 1200 | 1200 1
4 5 6 7 8
[—] [— [—] [—]
(—] = < =
o6 o B
— — —
1300 ;300 2 300 , 300 |3
I

Figure 1. The geometry and loading conditions of example 1.
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Figure 2. The comparison of the real collapse mechanism and obtained one via ANN of Example 1.

The real and computed collapse load factor is equal to 1.97. the most important
difference is in the computational time. In a similar computer, the conventional methods
require 1463.23 seconds and the proposed method needs 0.005 seconds, for analysis.
Therefore, the efficiency of the proposed method as well as its accuracy can be deducted.

4.2. Example 2: Three-Bay, Three-Story Frame

The second example, as illustrated in Fig. 3, is more complicated than example 1. In this
example, the collapse mechanism and load factor of a three-story, three-bay frame are
investigated.

Similar to example 1, the comparison of the real mechanism and the obtained one is
presented (Fig. 4). The collapse load factors for both methods are equal to 1.6. however, the
efficiency of the proposed method is about 0.007 seconds in comparison to 1501.44 seconds
of the evolutionary methods.
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Figure 3. The geometry and loading conditions of example 2.
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Figure 4. The comparison of the real collapse mechanism and obtained one via ANN of Example 2.

Due to the similarity of the collapse mechanisms and load factors of the evolutionary and
the proposed method and the obvious differences between their computational costs, it is
possible to claim that the new proposed algorithm is considerable, either in accuracy or
efficiency.

4.3. Example 4: Two-Bay Gable Frame

The last example is more complicated than the two previous problems. This complexity is
due to the slope of the rafters of the gable frame that influences overall on the collapse
mechanism. Fig. 5 and Fig. 6 illustrate the problem condition and its comparison with the
evolutionary method result, respectively.
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Figure 5. The geometry and loading conditions of Example 3.
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Figure 6. The comparison of the real collapse mechanism and obtained one via ANN of Example 3.

The actual collapse load factor of example 3 is equal to 1 and both evolutionary and
proposed methods have been obtained from it. However, the computational time of the
evolutionary methods is nearly 3600 seconds. This time for the newly proposed method is
equal to 0.012 seconds.

Similar to previous examples, this example also confirms the efficiency and accuracy of
the new proposed algorithm.

5. CONCLUSION

In this paper, a new computational method according to a metaheuristic-based Artificial
Neural Network (ANN) has been presented. In this new framework, firstly a computational
dataset, including 3000 structures and their corresponding collapse mechanisms and load
factors has been generated using the hinge-by-hinge method. After that, a hybrid
metaheuristic-ANN framework has been employed to simulate the procedure of the
calculation of the collapse mechanism and its corresponding load factor. The trained
framework is now capable to obtain actual collapse mechanisms and load factors for new
frames. This claim has been proved via three different, challenging, and benchmark
problems. All numerical examples confirm the efficiency and accuracy of the new proposed
algorithm for plastic limit analysis.
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