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ABSTRACT

Shape optimization of a double-curved dam is formulated using control points for
interpolation functions. Every design vector is decoded into the integrated water-dam-
foundation rock model. An enhanced algorithm is proposed by hybridizing particle swarm
algorithm with ant colony optimization and simulated annealing. The best experiences of the
search agents are indirectly shared via pheromone trail deposited on a bi-partite
characteristic graph. Such a stochastic search is further tuned by Boltzmann functions in
simulated annealing. The proposed method earned the first rank in comparison with six well-
known meta-heuristic algorithms in solving benchmark test functions. It captured the
optimal shape design of Morrow Point dam, as a widely addressed case-study, by 21%
reduced concrete volume with respect to the common USBR design practice and 16% better
than the particle swarm optimizer. Such an optimal design was also superior to the others in
stress redistribution for better performance of the dam system.
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1. INTRODUCTION

Design of a concrete dam is one of the real-world problems that bring about high economic
impact. Concrete volume as the main construction material plays a major role in the total
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cost of such an infrastructure. Therefore, its minimization has been already addressed as a
rewarding task by several investigators [1-3]. The optimization methods seek for the best
design to find the optimal shape of the dam provided that it can successfully withstand
natural loads.

Sharma [4] utilizes the theory of plates and shells to seek for the best design of dam with
a repetitive trial and error method. Sharpe [5] treated shape and geometry optimization of a
concrete dam by Sequential Linear Programming (SQP) as a branch of MP. Wassermann [6]
used a mathematical formulation utilizing some shape functions and consequently employed
SQP to solve the optimization problem. Yao and Choi [1] applied higher-order elements for
the structural analysis in the design of dams. Some research works between 1987 and 1992
introduced a practical continuous geometrical model for shape optimization of the double-
curved dams [7].

An alternative solution is to apply zero-order stochastic methods that do not require any
gradient calculations (despite traditional MP) for optimal design. These methods include
meta-heuristic algorithms as a branch of stochastic search with the capability of escaping
from local optima toward global optimum. Some methods in this category can be referred to
as Ant Colony Optimization (ACO) [8], Simulated Annealing (SA)[9], Harmony Search
(HS) [10], Genetic Algorithm (GA) [11], Particle Swarm Optimization (PSO) [12], Water
Evaporation Optimization (WEO) [13], Falcon Optimization Algorithm (FOA) [14], Atom
Search Optimization (ASO) [15], Aquila Optimizer (AO) [16], Escaping Bird Search (EBS)
[17] and Artificial Hummingbird Algorithm (AHA) [18], among several others.

PSO is a pioneer method of swarm intelligence with simple moving strategies that makes
it a scalable easy-to-use and general-purpose algorithm [19]. It has already been hybridized
with some other methods for performance improvement. Liu et al. [20] hybridized PSO with
Differential Evolution (DE) [21]. Hadidi et al. [22] utilized a strategy for search refinement
about the global best of PSO regarding normal distribution and simulated annealing. Hassani
et al. [23] employed a hybrid PSO with Ant Lion Optimizer (ALO) [24] for optimization of
various test functions and 7 real-world benchmarks.

In addition to such attempts for optimization of trusses and other engineering
benchmarks, a number of studies have addressed optimal design of dams. They include the
application of GA in shape optimization of dams [25, 26]. Kaveh and Ghaffarian [27]
utilized a back propagation neural network to bypass high cost of frequency computations
and solved such a constrained problem with enhanced colliding bodies optimization. Some
studies concerned gravity dams for optimization [28]. Alimollaie and Shojaee [29] combined
group method of data handling as an approximate analysis method with PSO for optimal
design of a concrete arch dam under seismic excitation [29].

Although PSO is a widely used meta-heuristic for several engineering fields, it has some
weak points in its standard form. Alimollaie and Shojaee [29] stated slow convergence in
final iterations and capability of being trapped in local optima as deficiencies of PSO.
Shahrouzi and Salehi [30] compared 8 meta-heuristic algorithms revealing that standard
PSO was not as good as some others in 13 benchmark functions; however, it showed
superior quality in a few test functions.

A common way to enhance searching capabilities of PSO, is to hybridize it with some
other meta-heuristics [31]. In this regard, the present work develops a hybrid method
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combining SA, ACO and PSO to achieve better performance in optimal design of dams.
Shape optimization of Morrow point dam is then treated as a practical large-scale case study
to evaluate enhancement of such a swarm intelligent algorithm. Full finite element analyses
are employed to obtain accurate results and ensure feasibility of the optimal designs.

2. CONCEPTS AND DEVELOPMENT OF THE PROPOSED ALGORITHM

Before introducing our enhanced swarm intelligent algorithm, a basic methods are briefed
here to provide the theoretical support. A vast number of optimization algorithms fall in the
category of directional search [32, 33] as they apply vector-sum operations to generate new
solutions from previous ones; e.g. by the following common relation:

X=Xy (1)

where Xi' x!stands for the design vector of the i" individual at the iteration t. The velocity

vector Vit is the corresponding difference vector of that individual in moving from the
position X! to Xi'. Different algorithms of this category have different details to calculate
and update such a velocity vector.

2.1 Particle Swarm Optimizer

Particle Swarm Optimization, PSO is a very popular meta-heuristic algorithm in the
category of directional search. As first introduced by [12], PSO is an attempt to simulate
some actions in natural bird flocks when flying together in a swarm. The simulated flights
are introduced via three terms in the following velocity vector; i.e. the inertial, the cognitive
and the social terms:

V' =cV, " +rand xc, (B — X[ ™)+ rand xc, (G — X ™) (2)

The inertial term in such a vector-sum formula, denotes a vector in the direction of previous

velocity vector; scaled by the factor c;. The vector (8f~*-x!~%) is directed from the

position X! toward the i" individual’s best-experience denoted by the vector Bi*1. Such a
cognitive term is further scaled by the constant factor ¢, and the function rand that generates
random numbers between 0 and 1. Applying such a random operator improves the
explorative feature of the algorithm. The third term is called social because it applies the
global best experience over the whole swarm the target toward which the vector from the
position X! is directed. Such a vector is further scaled by the social factor cs and the
random value rand. Such a vector-sum formula with random scaling is directly applicable to
continuous optimization problems.

2.2 Ant Colony Optimization
Ant Colony Optimization, ACO, stands for a class of meta-heuristic algorithms inspired by
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stigmergy between natural ants and their environment [34]. The term stigmergy refers to the
indirect interaction of natural creatures with each other by changing their environment.
When a natural ant walks between two stations; similarly the artificial ant goes through an
edge of the corresponding graph in the computer simulation. The process continues for each
ant until it completes a tour (a path graph) that represents a complete design vector; for
which the objective function is evaluated.

Natural ants smell the remained amount of a chemical instance called pheromone in the
forward path, to select their best way. Such a process is simulated in ACO to provide
indirect sharing of experienced information between artificial search agents. An ACO
algorithm may use two guiding parameters; namely attractiveness and pheromone trail.
Attractiveness is a problem-specific local guide while the pheromone trail is crucial for an
ACO algorithm. Its use can be generalized in the population-based algorithms provided that
the characteristic graph and related paths be adequately defined. Because of applying
pheromone on the edges of the graph; ACO methods are basically suited for discrete
problems.

2.3 Pseudo-random Directional Search

PSO and ACO apply different strategies to solve an optimization problem. Some
investigators have already utilized hybrid approaches to take merit of both [32,35]. Pseudo-
random Directional Search, PDS [35] is one of them that offers a particular selection process
using a bi-partite characteristic graph [36] to solve either a discrete or continuous
optimization problem.

Like PSO, PDS also employs directional search via Eq. (1); however, by a different way
of generating the velocity vector. It is given by:

V=8, =rand xc;(T; - X{™) (3)

Where T; stands for the j" one among a prescribed set of state-targets; S denotes that state
and ¢; is the corresponding scale factor. Each state-target introduces a formula generating a
target position; toward which the new velocity vector is oriented (form the position x;*). At
every i iteration, selection of the index j is analogous to connecting an edge between the
vertex i in the first part to the vertex j in the second part of the characteristic graph. Hence,
such a bi-partite graph has the ID number of particles in its first part and the ID number of
state-targets in the second; provided that each edge is limited to be drawn from the first part
to the second.

Selecting a state by a particle is performed by the pheromone trail strategy. Once a
state-target k is selected by the particle i an amount of pheromone (denoted by 7;;) is
updated on the edge i-k. The remained pheromone trail on these edges acts as a guide for
future selection of the state. A probability value pik is calculated based on the remained
pheromone on the edges i-I by:
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_S 4)

Applying a roulette-wheel lemma on pix (such as in genetic algorithms); a state index is
determined as ;" among the total Ns states. At any iteration in PDS, final selection of the
state j by a particle i is performed by:

arg max p;, if r<d,
k
= it if r>q ()
" otherwise

where qoand gz are two prescribed thresholds and r is a random value between 0 and 1. The
index j° is generated as a random integer between 1 and Ns. This way, the previous
experiences of state selection are indirectly shared via pheromone trails and applied either

by the arg ma?(.) function (deterministic) or via roulette wheel (stochastic) or purely random.
argmaxq  Stands for the index that corresponds to the maximum value of q over various k’s.
k

Further details about pheromone update in PDS can be found in [35].

PSO applies the velocity of each particle by summation of inertial, cognitive and social
terms in every iteration. It is while the movement of a particle in PDS, can include different
states in different iterations; each one selected using indirect share of previous experiences.

2.4 Simulated Annealing

In 1980’s a natural phenomenon was simulated for numerical optimization that mimics
annealing process in materials; particularly some kinds of metals. The governing rule; called
Boltzman machine, introduces how probable is that molecules (or atoms) of the annealed
metal be re-positioned into their crystal form with the minimum state of energy during the
annealing process. The probability of jumping to a higher energy state is given by:

AE

“bT (6)

P(AE,T) =e

in which ae denotes the energy difference at the temperature T , while b stands for the
Boltzman coefficient. It is also called a metropolis strategy that is employed in the
Simulated Annealing, SA by [9] as an optimization algorithm. Such a relation results in a
higher probability of jumping in lower temperatures; that is commonly provided with the
iterations of the algorithm. In perturbing a current design vector to a new candidate position,
the Boltzman formula allows hill-climbing jumps even in case of increasing the cost
function. Hence, it provides SA the capability of escaping from local optima toward global
optimum [37]. The application of this Boltzman formula is not merely limited to such an
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optimization algorithm; but several attempts address its hybrid applications or its use in the
dynamic tuning of control parameters in another main algorithm [38—40].

2.5 The proposed hybrid optimization algorithm

PSO is a popular mete-heuristic with a high exploration feature; however, it may suffer from
lack of search refinement in some cases. In this regard, one solution is parameter tuning
which is case dependent and may not be easy for large-scale real world problems. Another
way to improve performance of PSO is offered here by hybridizing some features from ant
colony optimization and simulated annealing.

The framework of PDS is extended here for such a purpose. It not only takes merit of
pheromone-based information sharing like ACO but also applies vector oriented movements
such as PSO; however, the vector-sum forms during iterations of PDS. It also employs a
roulette-wheel selection strategy that is widely applied in evolutionary and genetic
algorithms. Consider the following relation:

V, =V, +rand xc, (B — X ) +rand x ¢, (G — X{) +rand xc, (X = X{™) (7)

It has an extra term with respect to the velocity update relation of PSO; that is moving
toward a random position within its allowable limits denoted by x ¥ <x -, x " 1. The lower

and the upper bounds on the design variables are denoted by the vectors x L and xY
respectively. The fourth term is inserted to improve explorative feature of the algorithm. In
addition, the inertial factor is geometrically decreased by the term nt_lwheren IS a positive

constant of less than one. Such a modification provides more exploration as the iteration
number t increases. Every state S; is then generated by vanishing all factors cx except ¢; in
the above velocity relation to obtain:

Sp—oi (8)
Sy =rand xcy (B - X} ) 9)
Sg = rand xcg@' - x| ) (10)
S4 = rand xc4 (X1 =X} ) (11)

The proposed method selects each state from the set of {S1,S2,S3,S4} using selection rule
of Eqg. (5). Fig. 1 demonstrates a schematic of the corresponding bi-partite graph form Np
particles to N states. In this regard, all the pheromone trails ;; are initiated with unity and
then updated using the following relation.

let = let_l+a[l—ﬂ(l—}/t )] (12)
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where « and x are constant factors. The term ,' modifies the amount of pheromone
deposition when the iteration t increases from 1 to tmax. This term is controlled by a relation
similar to Boltzman machine for the probability of particles’ jumping as the annealing
energy changes. Here, ,' is calculated at each iteration t as follows using the Boltzman
coefficient: b. Fig. 2 shows variation of ,' with iteration t for sample values of b and tmax.

(=D

}/t —e b tmax (13)

The aforementioned operators are hybridized, here, in a Modified Particle Swarm
Optimizer, MPSO. It is introduced via the following steps:

Step 1. Initiate a population of ~, particles within variable’s limits. Such a vector for

every i individual can be obtained by:

xi:xL+R®(xU —xh (14)

The sign ® stands for component-wise product while R is generated as a vector of
random numbers between 0 and 1. Start the particle best matrix of [Bi'] by the initial
population.

Step 2. Initiate the matrix of pheromone trails [z] by 1 with Np rows and Ns columns
(Ns=4). Set the iteration number as t=1.

Step 3. Evaluate the cost function for all individuals
Step 4. While t <t,,, do Steps 5, 6 and 7.
Step 5. Update the global best vector as G' and increase the iteration number t by 1.

Step 6. If t < st for every i particle do:
Generate the candidate position X" by:

X Candid t-1  t-1

t-1 t-1
i =X| +n C]yl + rand XCZ(BI

X rrand xep6 T ox T (15)

Evaluate the candidate position and replace it with the corresponding particle in case the
candidate is fitter than it.
Update the particle-best experience (cognitive position)
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Step 7. If t > st for every it particle do:
Select j and the consequent state S;by:

arg max p,, if r<dg,
k

i= (16)

i° otherwise

Generate the candidate position by the following formula with a perturbation factor ¢ :

Candid t-1
X =X +Sj+sk§j8k (17)

Evaluate the candidate position and replace it with the corresponding particle in case the
candidate is fitter than it.
Update the particle-best experience (cognitive position)

Step 8. Announce G' as the optimum solution.

Note that the first o, iterations are similar to PSO with geometric decay in the inertial
term while the remainder hybridizes the prescribed operators from PSO, ACO and SA. It can

also be considered an extension of PDS that appliess; + 8k§j S in its velocity update.

Part 1: Part 2:
Particle ID's State ID's

Figure 1. The characteristic bi-partite graph for state selection and pheromone deposit
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Figure 2. Sample variation of the proposed annealing function for different Boltzman’s factor vs.
iteration (t)

3. UNCONSTRAINED OPTIMIZATION

Performance of a new optimization algorithm can be evaluated in solving standard test
functions. Such a task deals with just simple bounds on variables; practically satisfied by a
fly-to-boundary technique [41,42]. For a more rigorous evaluation, the test functions of
CEC2005 competition are treated. These functions; i.e. CF1 to CF6 are plotted in Fig. 3 with
the definitions given in Table 1 [43]. They are solved by the proposed MPSO and PSO in
comparison with a number of other meta-heuristics including LAPO [44], FOA [14],
ASO [15], BES [45] and AO [16].

Table 2 gives specific control parameters of each algorithm while 20 population members
and 2000 function calls are identically set for all of them. The selected algorithms cover a
variety of control parameters from LAPO (with no specific parameter) to FOA with 7 and
MPSO with 10 specific parameters. Each problem is solved via 30 independent trial runs
preserving fair comparison conditions [17].

The statistical results are summarized in Table 3. It is observed that the proposed MPSO
has approached the global optimum of CF1 by a tiny threshold in the order of O(107®); well
superior to the best result of PSO as 0.06 and also to the others. Regarding the mean results
on CF1, MPSO has obtained 0.15; that is 15 times better than PSO and 5 times smaller than
0.76 by FOA which is itself the best among the others.
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Figure 3. Composite/hybrid test functions CF1~CF6; plotted in the domain of [-5, 5]

According to Table 3, such a superiority in the best optima has remained stable in solving
CF2 to CF6; particularly in comparison of MPSO with PSO. A similar trend is observed for
the mean results except in solving CF3 where FOA has revealed 17.78 and MPSO has the
second rank by obtaining 40.19, on average.

Table 3 also declares that in most of the treated cases, the proposed method has exhibited
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competitive standard deviation (SD) with the other methods revealing its robustness in
solving such complex test functions.

Table 1: Definition of the benchmark functions

Function Definition Type
f,, f,,..., T, = Sphere function
CF1 0,05, 0y =[11,...,1] composite

s Ao 2oy =[51100,5/100, ..,5/100]

f,, f,,..., f,, =Greiwank's function

CF2 07,0503 =[11,...,1] composite
Ay Ay yevs gy =5.11100,100,...,100]

f,, f5,..., f,, =Greiwank's function
CF3 0,,0,,..,0y =[1,1,...,1] composite
Ay gy g =[11,...]]

f,, f, = Ackley's function  f,, f, = Rastrigin's function
f;, f, =Weierstrass function f,, f; = Greiwank's function
fy, f,, = Sphere function
CF4 0,,0,,...0y, =[11,....1] hybrid
Ay, Ay =5.1[32,32,1,1,0.5,0.5,100,100,100,100]

f,, f, = Rastrigin's function f,, f, =Weierstrass function
f., f, = Greiwank's function f,, f; = Ackley's function
f,, f,, = Sphere function
CF5 0,,0,,..,0 =[11,...,1] hybrid
Ay, Ay =[0.2,0.2,10,10,0.05,0.05,5/ 32,5/ 32,0.05,0.05]

f,, f, = Rastrigin's function f,, f, =Weierstrass function
f;, f; =Greiwank's function f,, f; = Ackley's function
fy, f,, = Sphere function
CF6 01,05,...,0,,=[0.1,0.2,0.3,...,0.9,] hybrid
Ay, Ay =[0.02,0.04,3.00,4.00,0.5%0.05,0.6 % 0.05,0.7x5/32,0.8x5/32,0.9x0.05,1x 0.05]

Nevertheless, MPSO shows considerable improvement with respect to PSO as a main
objective of this experiment on unconstrained optimization. In the next part of this study, the
optimal shape design of a concrete arch dam will be treated as a highly-constrained practical
problem.
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Table 2: Control parameters of the applied optimization algorithms

PSO MPSO LAPO BES FOA ASO AO
C=2 C, =20
C,=2 C,=20 a=01
G=1 ¢=2 a=10 f,=2.0 Lo 9=01
C.=2 9,=0.10,b=0.25 - R=15 AP =0.1 £=02 o =0.005
C,=2 a=0.10,2=0.01, a=2 DP=0.8 u=0.0265
5=0.05,77 =0.99 a=01 r, =10
£=0.01 b=1.0

[ Downloaded from sae.iust.ac.ir on 2025-11-09 ]
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Table 3: Results comparison in optimizing test functions

Function PSO MPSO LAPO BES FOA ASO AO
Best 0.06 1.8E-05 0.03 0.07 0.03 25.66 00.12

CF1 Mean 2.33 0.15 3830 9829 0.76 281.79 46.00
SD 4.38 0.78 2993 14731 134 89.26 46.96

Best 3.84 0.13 3596 4727 355 16494 4.25
CF2 Mean 154.15 2793 130.25 203.47 89.54 297.44 108.01
SD 92.53 30.37 45.76 141.78 79.38 46.54 47.42

Best 0.66 0.01 3.22 0.62 027 21091 293
CF3 Mean 128.11 40.19 79.86 28291 17.78 64445 13251
SD 164.24 67.39 96.73 312.19 3225 17257 126.41

Best 132.71 2.64 201.73 235.15 104.35 40257 54.63
CF4 Mean 215.31 195.98 368.35 608.99 356.73 751.81 308.85
SD 64.05 76.41 98.21 220.26 9436 160.50 157.75

Best 0.63 0.003 0.34 1.03 0.95 10794 0.40

CF5 Mean 111.17 36.91 74.65 223.46 69.41 538.22 38.06
SD 147.70 48.84 4453 261.65 47.64 163.01 46.65

Best 105.03 100.03 107.98 17431 110.78 314.08 124.06
CF6 Mean 409.29 229.28 349.28 409.35 377.91 475.18 373.60
SD 119.23 155.12 110.52 104.24 11894 3243 103.13

4. GEOMETRY ASSESSMENT OF THE DOUBLE-CURVED DAMS

Arch dams are structures that rely on the spatial form of their body to withstand the applied
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loads. Horizontal and vertical profiles in a concrete dam as well as the corresponding
dimensions have a major role in providing sufficient stability and structural strength [2]. In
the other hand, the cost of the construction material; i.e. concrete, is so high that makes it
reasonable to seek for its minimal value under the given constraints. The optimal dam-
geometry is also affected by the material strength and the shape of the valley surrounding
the dam [46].

When a designer attempts to determine the geometrical shape of a double-curved dam,
the crown cantilever is concerned first and then the horizontal rings should be determined at
all vertical levels. However in an automatic optimal design procedure, both vertical and
horizontal design parameters can simultaneously be altered until their optimal values are
found. Such parameters commonly obey some template shapes to govern the geometry of a
double-curved dam. The template relations have already been offered and upgraded by a
number of investigators [2,7]. Prior to formulating the optimization problem we describe the
applied template relations and their parameters to asses shape of the double-curved dam.

4.1 Geometric description of crown cantilever

According to Fig. 4, shape of the crown cantilever (the vertical profile) depends on the
upstream and downstream curves. Once the upstream curve and local thicknesses are
derived, the central curve can be configured. A third-order polynomial function [47] is used
to define the up-stream curve in the center-line of the dam:

2
Sl—ﬂ (Sl+82) 227 Sl—ﬂ(51+52) 23

5 (18)
2ph(L-p) 3ph - (1-5)

y(z) = -S1z +

whereas h, Si and S; are the height of the dam, slope in the crown and slope in the footing,
respectively. A fraction of the dam height which corresponds to zero slope is denoted
byz = ph .

Suppose the dam height is discretized by n parts (at n+1 levels). Consequently,
thickness of the crown cantilever is interpolated from thickness at n +1 levels as:

n+l

t(2) =§Li (2)xtg (19)

At any i" level, tci stands for the crown cantilever thickness while L;(z) denote the

corresponding Lagrange interpolator function; given by:

he-z)
L, (Z)_H:l(li—zm) m#i (20)

where z; and zy stand for the coordinates at the i and m" levels of the central cantilever,
respectively. In the present study, the number of subdivided parts n is taken 5. Consequently,
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n+1 corresponding height levels are denoted by z; = 4 h where the counter index i can be
an integer between 1 and 6.

z=ph

T Ta, 3

Figure 4. Shape of a typical double-curved dam and the governing variables

Reservoir

\

Foundation

\

(a)

(b) (e
Figure 5. Finite element model of Morrow Point dam: (a) Integrated dam_water_foundation
rock system, (b) dam-lake system, (c) dam body

4.2 Geometric description of the central horizontal arch ring

A typical profile of the dam body is depicted in Fig. 4. It is distinguished by the second-
order functions defining the upstream and downstream curves as recommended in the
literature [7]. The corresponding relations are given as:

Yeu (x, z) = 2ru1(z) x2 + B(z) (21)
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Yed (x,z): Zrdl(z) x2+B(z)+tc (z) (22)

ry and y.y denote the radius and y-coordinate of the downstream curve, respectively. The

interpolated function B(z) = y(z) . The corresponding values for the upstream curve are given
as r, andy_ . Height-wise variation of such radii are obtained by Lagrange interpolation as

follows:

n+1

r (z) = El Li(Z)x Ty (23)
+1
A (z) = :]zl Li(Z)x a (24)

This way, the horizontal and vertical shape of the dam is determined based on the thickness,
upstream and downstream radii at n+1=6 equal-distant points. Due to real-world conditions
in construction of the dam, its plan section may be inclined about the central z-axis by the
angle .

4. PROBLEM FORMULATION

It is aimed to minimize total concrete volume V in the body of the double-curved dam by
altering its shape so that it can withstand the design loads.

min V(X):Ze:ve (25)

The volume of every e element is denoted by ve. According to the previous relations, the
design vector X for shape optimization of the double-curved dam is defined as:

T
X = {tcl"tcﬁ' I’l,..., r6,R1,..., RG,Sl,Sz,ﬂ,¢} (26)

Such a design vector has 22 continuous variables. The constraints in such an optimization
problem are denoted by side limits x L < x <x" and behavior constraints in the general form
of g, (x)<0 for any m" constraint. During the optimization, the design variables are

enforced to fall within their side bounds; however, satisfaction of the other constraints are
ensured by an external penalty approach to provide required stability and serviceability. The
problem formulation is transformed into fitness maximization as:
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max Fitness(X) = —¢(X) = -V (X) x[1+ kp%max(o, Im (X))] (27)

The penalized cost is denoted by ¢£(X) as reverse of the fitness function. The penalty

factor kp is selected large enough to achieve feasible optimal designs by MPSO. In this
problem, the constraints (other than simple bounds) are distinguished in stress, stability and
geometrical groups [7] and are detailed as follows.

Arch dams can be constructed using mass concrete without any reinforcement. The
design, safe operation and stability of the structure are controlled based on the allowable
stress method. The maximal absolute stresses are computed by finite element analysis after
generating the dam shape and its structural model. Such stresses are subject to the following
constraints:

Gl(X):G—cflgo (28)
I:C
t

G,(X)=—-1<0 (29)
R

o and F represent the principal stress and allowable uniaxial strength, respectively. The
subscript t stands for tension while ¢ stands for compression.

To provide stability, the central ring angle of the arch dam is controlled here at various
height levels by:

G3; (X):(p—tij—lso (30)
4
?i
Gy (X)=1-—1-<0 (31)
9

: . L U - ,
in which ¢~ and ¢~ represent the minimum and maximum allowable central angle and ¢;

is the angle at the i height level.

Geometrical constraints are applied due to executive considerations during the
construction phase. In this study, three geometrical constraints are considered: overhang and
undercut slopes, upstream and downstream radii and dam thickness among its height.

Crown cantilever curve slopes at the overhang and undercut levels are defined as partial

geometrical constraints. s, and s, denote the overhang and undercut slopes, respectively.

They are confined to their allowable limit: s_, by the following relations.

all
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s
Gg(X)=—-1<0 (32)

all

S
Gg(X)=—2-1<0 (33)
Sal

Table 4: Mechanical properties for materials of the dam-water-rock system

Parameter Value (Unit)
Dam-body Concrete
Mass Density 2483 (Kg/md)
Elasticity modulus 27580 (MPa)
Poisson’s Ratio 0.20
Uniaxial compressive strength 30 (MPa)
Uniaxial tensile strength 1.5 (MPa)
Water
Mass Density 1000 (Kg/md)
Velocity of Pressure Waves 1440 (m/s)
Wave reflection coefficient 0.90
Foundation rock Properties

Mass Density 2483 (Kg/m?)
Elasticity modulus 27580 (MPa)
Poisson’s Ratio 0.25

To prevent the coincidence of the upstream and downstream curves, the following
constraint is applied:

Gy (X)=F:L—1so (34)
i

in which, r, and r, denote the radii of the downstream and upstream curves at the i

interpolation point, respectively.

Due to construction and gravitational load considerations, the thickness of each point
among the dam height should not be greater than a neighbor point above it. This geometrical
constraint is thus applied by the following relation:

t. .
Gg, (x) = —

-1<0 (35)

tc,i +1

where t; stands for the thickness of the dam in the crown vertical for the i"" height level.
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Table 5: Lower and upper bounds on the design variables

Variable X+ XY
a1 7 10
fc,2 8 15
3 12 20
te,4 15 25
¢ 5 17 30
6 20 35
a1 115 156
d,2 99 133
.3 82 111
'd 4 65 88
.5 48 65
'd.6 31 42
W1 115 156
W2 99 133
.3 82 111
.4 65 88
U5 48 65
.6 31 42
51 0.09 0.36
Sy 0.09 0.36

B 0.5 0.9
o) -1 1

5. SHAPE OPTIMIZATION OF MORROW POINT ARCH DAM

Morrow Point double-curvature arch dam, was constructed in 1968 over the Gunnison River,
263 km south-west of Denver in Colorado. Since then, several research works have already
addressed design of this dam as a case study [48-50]. Table 4 gives the properties of the
construction and environmental materials; i.e. body, water and foundation-rock [51,52].

Simple bounds on the design variables are given in Table 5.
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Table 6: Comparison of shape designs for Morrow Point dam by different methods

Variable USBR PSO MPSO
tes 6.60 7.00 7.02
te. 10.00 10.35 9.86
te3 13.30 14.04 12.02
to.4 16.00 16.20 15.03
te5 18.60 19.85 17.02
te6 21.70 22.03 20.10
1 287.00 124.95 134.41
Iy 2 187.00 116.07 120.97
43 106.00 106.74 108.98
4 4 94.00 88.00 87.86

Iy 5 79.60 65.00 64.86

4 6 63.70 42.00 41.61
L1 122.00 124.39 123.54
.2 108.00 113.37 117.36
.3 93.00 105.48 108.19
.4 78.00 88.00 87.74
5 61.00 62.71 64.79
.6 42.00 41.33 41.42
S; 0.36 0.34 0.36

S, 0.10 0.10 0.09

B 0.70 0.63 0.73
o) 0.00 -0.23 0.98
Best V(m®) 294841.00 278236.60 233065.38
Mean V - 263238.29 261359.51
Mean Penalized V - 255765.40 245814.40
SD - 16010.56 36246.26

Parts of the finite element model for the system of dam-water-rock are illustrated in
Fig. 5. Such an interacting system is simultaneously modeled in three dimensions using
ANSYS software [53] with the capability of automatic mesh generation. It is linked with our
optimization programs in MATLAB environment [54]. During optimization, each design


http://dx.doi.org/10.22068/ijoce.2023.13.4.564
https://sae.iust.ac.ir/ijoce/article-1-564-en.html

[ Downloaded from sae.iust.ac.ir on 2025-11-09 ]

[ DOI: 10.22068/ijoce.2023.13.4.564 ]

432 M. Shahrouzi, S.-Sh. Emamzadeh and Y. Naserifar

vector is decoded to reveal the corresponding shape of the dam body. Consequently, the
entire finite element model is constructed and analyzed to derive structural responses.
Critical responses such as principal stresses and reactions are used to evaluate the constraints
and fitness function for the corresponding design vector.

As PSO and MSPO are both stochastic methods, they are run for 60 independent trials to
obtain reliable results. The problem is solved with 40 individuals up to 250 iterations while
other control parameters are given in Table 2. Henceforth, 10000 finite element analyses are
implemented at each run to ensure convergence of the algorithms. As such a real-world
design task is computationally expensive, it is highly rewarding to improve efficiency and
effectiveness of PSO via the proposed MPSO.

I
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| — MPSO
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I
i
s |
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Figure 6. Convergence comparison for the best run of MPSO vs. PSO in shape optimization of
Morrow Point dam

In order to evaluate design improvement via optimization with respect to common
practice, the Morrow Point dam is once designed by the procedure of USBR and Varshney’s
method [55,56]. Such a single practical design is then inserted in the initial population of
particles that are randomly generated during optimization. The initial population is
identically used for each independent run of PSO and MPSO to provide a fair comparison
between them; however, it is regenerated in every new run.
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(©)
Figure 7. Comparison of principal stresses in final design of Morrow Point dam by USBR vs.

optimal designs by PSO and MPSO: (a) a; ,(b) a5 and (c) a3

During this numerical experiment no feasible optimal design coincided with the design
by USBR’s method; i.e. structural volume of 294841.0 m? for the concrete in the dam body.
The mater indicates that such a practical design is not optimal. According to Table 6, the best
design of PSO resulted in a volume of 278236.6 m® which is 6% lower than USBR’s design.
MPSO exhibits more improvement of 21% in obtaining its best design that weighs
233065.4 m®. In another word, the proposed MPSO has considerably reduced the material
consumption by 61776 m®with respect to the common practice (USBR) and 45171 m®with
respect to PSO. Fig. 6 reveals superior convergence of MPSO with respect to PSO in such
an optimization run. It is observed that PSO has revealed a rapid initial drop in the penalized
cost; however, it has further been ended with a less-fit local optimum. In contrary, the
proposed MPSO has exhibited better search refinement than PSO and has overpassed local
optimum toward a fitter (lower cost) optimal design.
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The constraints are checked and reported in Table 7 for the best designs of PSO and
MPSO in shape optimization of Morrow Point dam. It can be noticed that despite PSO, the
proposed MPSO has successfully satisfied all the constraints to obtain a perfect feasible

design. It is while the best design of PSO has infeasibility in the stability constraint 6, 5(x);

that corresponds to an out-of-bound value for the central ring angle at the 3" control point.

Table 6 also shows superiority of MPSO over PSO in obtaining better mean penalized
cost and mean volume. The proposed MPSO has enhanced performance with respect to
PSO; not only in the best design but also in constraint handling to obtain fitter mean results.
According to Table 6, more standard deviation can be observed over different trails of
MPSO with respect to PSO. It can indicate higher diversity maintained by MPSO during
such a shape optimization.

In order to have further engineering insight on the aforementioned designs of Morrow
point dam; distribution of principal stresses are compared in Fig. 7. It is observed that
despite the USBR design, the optimal designs have generally distributed less stresses even in
less effective parts of the dam body.

According to Fig. 7, several stress zones can be distinguished for the dam body mainly in
the upstream and downstream surfaces. The tensile zone area is as small as nearly 5% of
the dam surface by USBR procedure due to applying high safety factor for tension. In the
best design by PSO, two narrow bands of tension stresses are detected at left and right
abutments. Finally in MPSO design, tracing tension stress in the upstream surface, three
high-stress narrow bands are declared at the right and left abutments and also at the bottom
of the dam body. Comparison of the results indicates that the proposed optimum design has
been more successful in achieving tensile capacity of the concrete dam body in the allowable
range.

6. CONCLUSION

Shape optimization is treated as a crucial issue in the design of arch dams. It was formulated
using 22 continuous design variables and a rigorous set of behavior constraints. A
preliminary procedure of USBR as well as two swarm intelligent algorithms: PSO and
MPSO were employed for the shape design of concrete double-curved dams. The proposed
MPSO indirectly utilizes previous experiences of the artificial search agents via pheromone
trails selecting new states to increase effectiveness of the optimization algorithm. It takes
advantage of Boltzmann machine to tune the algorithm for better performance.

Performance of the proposed method was evaluated in comparison with a number of
meta-heuristics in optimizing six composite test functions. Consequently, MPSO showed
superior performance to PSO not only in the best but also in the mean results. In most cases,
the achieved standard deviation by MPSO remained in the same range as the other treated
methods revealing its competitive performance.

In shape optimization of the Morrow Point dam, it was observed that PSO and MPSO can
reveal significantly lower costs than USBR design procedure. However, the optimum design
of PSO had some degree of infeasibility. In contrary, the proposed MPSO was found
superior to the others not only in the quality of the best final design but also in the mean
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fitness over 60 independent runs of such an expensive task. The best result of MPSO was
perfectly feasible and it provided 21% lower material cost than USBR and 16% lower than
PSO. It is important from practical point of view; considering necessity of satisfying several
behavior constraints and that total cost of the arch dam majorly depends on its concrete
volume.

Comparison of the designs obtained by the treated methods in view of stress distributions
in the dam body, revealed further superiority of the proposed hybrid algorithm over the
others. The results of this study declare that principal tensile stress at the abutment of the
upstream face in MPSO is greater than PSO. In conclusion, the proposed hybrid method is
capable of revealing satisfactory enhancement over the well-known PSO and superior results
in compared with the common practice of USBR design procedure for the arch dams.

REFERENCES

1. Yao T, Choi KK. Shape Optimal Design of an Arch Dam. J Struct Eng
1989;115:2401-5.

2. Akbari J, Ahmadi MT, Moharrami H. Advances in concrete arch dams shape
optimization. Appl Math Model 2011;35:3316-33.

3. Pourbakhshian S, Ghaemian M, Joghataie A. Shape optimization of concrete arch
dams considering stage construction. Sci Iran 2016;23:21-35.

4. Sharma R. Optimal Configuration of Arch Dams. Indian Institute of Technology,
Kanpur., 1983.

5. Sharpe R. The optimum design of arch dams. Proc. ICE - Civ. Eng., 1969; 73-98.

6. Wassermann K. Three-Dimensional Shape Optimization of Arch Dams with
Prescribed Shape Functions. J Struct Mech 1983;11:465-89.

7. Zhu BB, Rao B, Jia J, Li Y. Shape Optimization of Arch Dams for Static And
Dynamic Loads. J Struct Eng 1992;118:2996-3015.

8. Dorigo M, Stutzle T. Ant colony optimization. London, UK: The MIT press; 2016.

9. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated Annealing. Sience
1983;220:671-80.

10. Geem ZW, Kim JH, Loganathan G V. A New Heuristic Optimization Algorithm:
Harmony Search. Simulation 2001;76:60-8.

11. Holland JH. Adaptation in Natural and Artificial Systems. University of Michigan
Press; 1998.

12. Kennedy J, Eberhart R. Particle swarm optimization. IEEE Int. Conf. Part. swarm
Optim., 1995; 4:1942-8.

13. Kaveh A, Bakhshpoori T. Water Evaporation Optimization: A novel physically
inspired optimization algorithm. Comput Struct 2016;167:69-85.

14. Hochsteiner E, Mariani VC, Coelho L dos S. Design of heat exchangers using Falcon
Optimization Algorithm. Appl Therm Eng 2019;156:119-44.


http://dx.doi.org/10.22068/ijoce.2023.13.4.564
https://sae.iust.ac.ir/ijoce/article-1-564-en.html

[ Downloaded from sae.iust.ac.ir on 2025-11-09 ]

[ DOI: 10.22068/ijoce.2023.13.4.564 ]

436

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,
25.
26.

217.

28.

29.

30.

31.

M. Shahrouzi, S.-Sh. Emamzadeh and Y. Naserifar

Zhao W, Wang L, Zhang Z. Atom search optimization and its application to solve a
hydrogeologic parameter estimation problem. Knowledge-Based Syst 2019;163:283—
304.

Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-ganess MAA, Gandomi AH.
Aquila Optimizer: A novel meta-heuristic optimization algorithm. Comput Ind Eng
2021;157:107250.

Shahrouzi M, Kaveh A. An efficient derivative-free optimization algorithm inspired
by avian life-saving manoeuvres. J Comput Sci 2022;57:101483.

Zhao W, Wang L, Mirjalili S. Artificial hummingbird algorithm: A new bio-inspired
optimizer with its engineering applications. Comput Methods Appl Mech Eng
2022;388:114194.

Rana S, Jasola S, Kumar R. A review on particle swarm optimization algorithms and
their applications to data clustering. Artif Intell Rev 2011;35:211-22.

Liu H, Cai Z, Wang Y. Hybridizing particle swarm optimization with differential
evolution for constrained numerical and engineering optimization. Appl Soft Comput
J 2010;10:629-40.

Storn R, Price K. Differential Evolution — A Simple and Efficient Heuristic for
global Optimization over Continuous Spaces. J Glob Optim 1997;11:341-59.

Hadidi A, Kaveh A, Farahmand Azar B, Talatahari S, Farahmandpour C. An
Efficient Hybrid Algorithm Based On Particle Swarm and Simulated Annealing for
Optimal Design Of Space Trusses. Int J Optim Civ Eng 2011;1:377-95.

Hassani Z, Alambardar Meybodi M. Hybrid Particle Swarm Optimization with Ant-
Lion Optimization: Experimental in Benchmarks and Applications. J Al Data Min
2021;9:583-95.

Mirjalili S-A. The ant lion optimizer. Adv Eng Softw 2015;83:80-98.

Parmee I-C. Genetic Algorithms and Hydropower System Design. Comput Aided Civ
Infrastruct Eng 1998;13:31-41.

Maheri MR, Taleb-beydokhti N, Ahadi S. Shape optimization of concrete arch dams
using simple genetic algorithm. Dam Eng 2003;X1V:105-40.

Kaveh A, Ghaffarian R. Shape optimization of arch dams with frequency constraints
by enhanced charged system search algorithm and neural network. Int J Civ Eng
2015;13:102-11.

Kaveh A, Zakian P. Stability Based Optimum Design of Concrete Gravity. Int J
Optim Civ Eng 2015;5:419-31.

Alimollaie S, Shojaee S. Optimal Design of Arch Dams By Combining Particle
Swarm Optimization and Group Method of Data Handling. Int J Optim Civ Eng
2017;7:493-514.

Shahrouzi M, Salehi A. Imperialist Competitve Learner-Based Optimization: a
hybrid method to solve engineering problems. Int J Optim Civ Eng 2020;10:155-80.

Liu M. Progressive collapse design of seismic steel frames using structural
optimization. J Constr Steel Res 2011;67:322-32.


http://dx.doi.org/10.22068/ijoce.2023.13.4.564
https://sae.iust.ac.ir/ijoce/article-1-564-en.html

[ Downloaded from sae.iust.ac.ir on 2025-11-09 ]

[ DOI: 10.22068/ijoce.2023.13.4.564 ]

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

A Hybrid Simulated Annealing, Particle Swarm and Ant Colony ... 437

Shahrouzi M, Pashaei M. Stochastic Directional Search: an efficient heuristic for
structural optimization of building frames. Sci Iran 2013;20:1124-32.

Yang XS. Nature-inspired optimization algorithms: Challenges and open problems. J
Comput Sci 2020;46:101104.

Dorigo M, Birattari M. and Stutzle T. Ant colony optimization. IEEE Comput Intel
Mag 2006; 1(4):28-39.

Shahrouzi M. Pseudo-random Directional Search: a new heuristic for optimization.
Int J Optim Civ Eng 2011;1:341-55.

Kaveh A. Structural Mechanics: Graph and Matrix Methods. 3rd ed. Hertfordshite,
UK: Research Studies Press Ltd.; 2004.

Suman B, Kumar P. A survey of simulated annealing as a tool for single and
multiobjective optimization. J Oper Res Soc 2006; 57:1143-60.

Kaveh A, Shahrouzi M. Simulated annealing and adpative dynamic variable band
mutation for structural optimization by genetic algorithms. Asian J Civ Eng
2006;7:651-70.

Ghorbani A, Akbari Jokar MR. A hybrid imperialist competitive-simulated
annealing algorithm for a multisource multi-product location-routing-inventory
problem. Comput Ind Eng 2016; 101: 116-127.

Kumar S, Tejani GG, Pholdee N, Bureerat S. Improved metaheuristics through
migration-based search and an acceptance probability for truss optimization. Asian J
Civ Eng 2020;21:1217-37.

Kaveh A, Talatahari S. Hybrid charged system search and particle swarm
optimization for engineering design problems. Eng Comput 2011;28:423-40.
Shahrouzi M, Aghabaglou M, Rafiee F. Observer-teacher-learner-based
optimization: An enhanced meta-heuristic for structural sizing design. Struct Eng
Mech 2017;62:537-50.

Liang JJ, Suganthan PN, Deb K. Novel composition test functions algorithm for
numerical optimization. IEEE Swarm Intell. Symp. SIS'05, 2005; 68-75.

Nematollahi AF, Rahiminejad A, Vahidi B. A novel physical based meta-heuristic
optimization method known as Lightning Attachment Procedure Optimization. Appl
Soft Comput J 2017;59:596-621.

45. Alsattar HA, Zaidan AA, Zaidan BB. Novel meta-heuristic bald eagle search

46.

47.

48.

optimisation algorithm. Artif Intell Rev 2020;53:2237—-64.

Mostafaei H, Sohrabi Gilani M, Ghaemian M. Stability analysis of arch dam
abutments due to seismic loading. Sci Iran 2017;24:467-75.

Saber Mahani A, Shojaee S, Salajegheh E, Khatibinia M. Hybridizing two-stage
meta-heuristic optimization model with weighted least squares support vector
machine for optimal shape of double-arch dams. Appl Soft Comput J 2015;27:205—
18.

Duron ZH, Hall JF. Experimental and finite element studies of the forced vibration
response of morrow point dam. Earthq Eng Struct Dyn 1988;16:1021-39.


http://dx.doi.org/10.22068/ijoce.2023.13.4.564
https://sae.iust.ac.ir/ijoce/article-1-564-en.html

[ Downloaded from sae.iust.ac.ir on 2025-11-09 ]

[ DOI: 10.22068/ijoce.2023.13.4.564 ]

438

49.

50.

51.

52.

53.
54,
55.
56.

M. Shahrouzi, S.-Sh. Emamzadeh and Y. Naserifar

Salajegheh J, Salajegheh E, Seyedpoor SM, Gholizadeh S. Arch dam optimization
considering fluid-structure interaction with frequency constraints using artificial
intelligence methods. 14th World Conf. Earthg. Eng., Beijing: 2008, 1-10.
Talatahari S, Aalami MT, Parsiavash R. Optimum Design of Double Curvature Arch
Dams Using A Quick Hybrid Charged System Search Algorithm. Int J Optim Civ
Eng 2016;6:227-43.

USACE. Earthquake Design and Evaluation of Concrete Hydraulic Structures.
Washington DC: US Army Corps Of Engineers; 2007.

Chopra AK. Earthquake Engineering for Conceret Dams. New Jersey, USA: John
Wiley & Sons, Inc.; 2020.

ANSYS. ANSYS advanced analysis techniques guide. Ansys Help 2007:724-46.
MathWorks. MATLAB, The language of technical programming 2006.

Varshney RS. Concrete Dams. Oxford & IBH publishing company; 1982.

USBR. Design of Arch Dams: Design manual for Concrete Arch Dams. Denver,
Colorado: United States Bureau of Reclamation; 1977.


http://dx.doi.org/10.22068/ijoce.2023.13.4.564
https://sae.iust.ac.ir/ijoce/article-1-564-en.html
http://www.tcpdf.org

