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ABSTRACT

Diagrids are of practical interest in high-rise buildings due to their architectural
configuration and efficiency in withstanding lateral loads by exterior diagonal members. In
the present work, diagrid models are screened based on a sizing optimization approach.
Section index of each member group is treated as a discrete design variable in the
optimization problem to be solved. The structural constraints are evaluated due to Load and
Resistant Design Factor regulations under both gravitational and wind loadings. The
research is threefold: first, falcon optimization algorithm is utilized as a meta-heuristic
paradigm for such a large-scale and highly constrained discrete problem. Second, the effect
of geometry variation in diagrids on minimal structural weight is studied for 18 diagrid
models via three different heights (12, 20 and 30 stories) and three diagrid angles. Third,
distinct cases of rigid and flexible bases are compared to study the effect of such boundary
conditions on the results. The effect of soil flexibility beneath the foundation on the optimal
design was found highly dependent on the diagrid geometry. The best weight and
performance in most of the treated examples belong to the geometry that covers two stories
by every grid line on the flexible-base.
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1. INTRODUCTION

High-rise buildings are desired to resist gravitational and lateral loadings and confine story
sways within acceptable limits. Diagrids are efficient solutions for tall buildings among
various configurations of lateral-resisting systems [1]. A diagrid consists of strong diagonal
bracings in premiere frames with or without exterior columns [2,3]. Sizing design of diagrid
members can alter distribution of internal forces and other structural responses. Every such
design that satisfies code-based regulations is considered feasible; however, optimization is
employed to select some among these solutions so that cost of material consumption is
minimized, as well.

In common practice, member cross sections are selected from a prescribed list of
structural profiles. Special consideration should be paid to dealing with such a discrete
problem. In this regard, proper representation of design variables is addressed by direct
index coding when evolutionary algorithms are applied [4-7]. However, some other meta-
heuristic algorithms fall in the category of directional search methods that generate
continuous positions during their search [8-12]. Consequently, the resulting design vectors
should be rounded to section indices and decoded to the structural models. In this category,
many algorithms can be addressed including Genetic Algorithms [13-15], Particle Swarm
Optimization [16], Charged System Search [17], Ant Colony Optimization [18-20], Dolphin
Echolocation Algorithm [21,22], Bat algorithm [23], Water Evaporation Optimization [24],
Vibrating Particles System [25], Coyote Optimization Algorithm [26], Salp Swarm
Algorithm [27], Falcon Optimization Algorithm [28], Shuffled Shepherd optimization
[29,30] and Escaping Bird Search[31].

A number of investigators have already studied design of diagrid systems.
Shahrouzi et al. approached the diagrid design under wind-loading by different optimizers
including Harmony Search [32,33], Particle Swarm Optimization [16,34] and Mine Blast
Algorithm [35]. The authors presented coding schemes for sizing only and also for
simultaneous sizing and layout optimization of diagrids. Gerasimidis [36] proposed a simple
approach to optimize size of diagonal members in tall buildings subject to lateral stiffness
and deflection constraints. Tomei [37] utilized an encoding scheme for minimal weight
design of irregular diagrid structures by genetic algorithms imposing constraints on the
lateral stiffness. A lattice-based algorithm is offered by [38] for conceptual design of
diagrids. Some investigators studied various diagrid geometries using simplified design of
diagrid modules [2,39]. It is while design of frame members affects the design and behavior
of diagonal members due to redistribution of internal forces.

The aforementioned works studied behavior of diagrid systems on rigid supports;
however, the soil beneath the foundation is actually flexible. The present study simulates the
effect of flexible-base by equivalent springs in the structural model. A variant of FOA is
then utilized for discrete sizing design of diagrid structures on both rigid and flexible
supports to investigate the corresponding structural weights. All diagonal and frame
members (beams and columns) contribute in such a sizing design. As another issue, the
effect of variation in the diagrid geometry is studied after screening the designs via sizing
optimization. It has already been addressed in some literature works by comparative study
on structural responses after preliminary design of its members [2]. However, the present
study applies FOA to find optimum sections for each uniform grid angle. Symmetric
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grouping of structural members is employed to deserve practicality of designs as well as to
provide computational efficiency via the encoding method.

The rest of this article is structured as follows: The sizing optimization problem and the
employed decoding scheme are explained in Section 2. The inspiration concepts and
implementation steps of falcon optimization algorithm are reviewed in Section 3. Section 4
introduces loading, boundary conditions and modeling of the structural examples followed
by the optimization results. The present work is concluded reporting the most important
outcomes in design of regular diagrids.

2. FORMULATION AND ENCODING SCHEME FOR DISCRETE SIZING
DESIGN OF DIAGRIDS

It is desired here to minimize the weight of constructional steel material in the entire diagrid
system (including diagonals and frame members) provided that the design code

requirements are satisfied. The row objective function is given by the following relation:
D Nm()

W=pz Z Al (1)
j=1 i=1

The total weight of a structure;W is calculated using p as the material density,l; as the i"
member length and A;as its cross-sectional area. Every j" design variable is taken the
section index of the j™ member group. The number of elements in a typical j" group is
denoted byN,,, ().

The following side constraints limit the section indices to fall within a prescribed integer
set between X! and XjU ; referring the available list of structural profiles where:

L L ul ; —
X e{x\,x'+1,..,x"},j=12,..,D (2)

For practical sizing of diagrids, a discrete set of structural sections is used. Therefore, the

aforementioned FOA is specialized by the following encoding actions:

- Any design vector X consists of integer components X;; denoting an index in the
structural section list. Different member types (columns, beams or diagonals) can be
associated with different ranges of indices in such a list.

- At the first iteration, initial values for each individual are randomly picked from
integers between X/and X/’

- The candidate solution of Eq.(7) should be rounded to integer values prior to be
decoded into the corresponding sections in the structural model for fitness evaluation.

All behavior constraints are handled by exterior penalty approach of the typical relation:

Max Fitness (X) = — Cost (X) 3

Cost(X) = W(X) x [1 + k, ¥ max(0, g(X))] 4)

where each e inequality constraint is in the standard form of g,(X) < 0 and stands k, for
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the penalty factor. The constraints are specifically described as follows. Cost (X) is a scalar
function of the design vector X. It denotes the penalized weight derived from raw structural
weight W. The behavior constraints are applied due to Load and Resistant Factor Design
(LRFD) procedure of common codes [40,41].

The function g(X) is the allowable stress constraints defined as follows:

gixX)=sr]-1<0 e=12,..,Ny (5)

The absolute combined stress ratio, Sv,, is calculated for every e element in the g™
behavior mode given by the design relations as follows:

2.1.1 Axial Behavior
For the compression and tension member the demand to capacity (stress) ratio is calculated
as SrAxial py:

. P,
STeAxlal — F“ (6)
c

Pe = @cPy = @cFerAy @)

where P, is the absolute axial response force in the element with a nominal axial strength of
P,. According to LRFD regulations, the corresponding reduction factore, is equal to 0.9.
The parameter A,is the gross section area of the element. The critical compressive stress
due to elastic buckling F,., is given by the design code [40] in term of the slenderness ratio,
2

A, the yield stress F,and the Euler stress F, = Z—ZE.The elasticity modulus of the construction
steel material is denoted by E.

L, the effective length factor ofk and the minimum gyration radius of r,,,, the

.. kL
slenderness ratio is calculated as A =

2.1.2 Combined Behavior

For the members in bending and axial stress the combined stress ratio Sr4*! is given
by the design code [40] as:

P P, 8(My M

L>02>  SrAxa =—“+—<ﬂ+ﬂ>s 1 (8)
Pc Pc 9 Mcx Mcy

b g2s gpwma oz fo (—M”" 4y > <1

Pc 2Pc Mcx Mcy

where M, = ¢, M, is the design flexural strength whereM,stands for the nominal
bending capacity and ¢, = 0.9 is the corresponding reduction factor. The bending stress
ratio is distinctly evaluated in principal axes of the member section based on its shape.
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2.1.3 Flexural Members: I-Shaped Sections

For cross sections of I-shapes, the nominal bending capacity about major and minor axes

are given by M,,,, and M,,, , respectively.

My, = min{Mnxlv Myx, Myyy3, Mnx4} (9)

My, = min{Myy1, Mpy,} (10)

The corresponding nominal strengths are given by following relations:

My = Rngnyc (11)
_ Mnxl Lb = LP
Mnaz = {Rngcrsxc Ly > Lp (12)

According to the above equations, critical stress F.,.due to the lateral-torsional buckling is

checked based on the unbraced length of the beam L,. The parameters Ry, Cp, L, L,-are
given by the design code [40].
b
My ? < /1pf
M3 = b (13)
RygFerSxc = > s

In which F.. counts for the local buckling effect based on comparison of the flange

slenderness ratio A = :t—’;ccwith its limiting values A, = 0.38 % and 4,5 = \/FEY bg. is the
compressive flange width and ¢, is its thickness. S, and S, stands for the elastic-section
modulus relative to the compressive and tensile flanges, respectively. For symmetric
sections:

Myys = Fnyt (14)
For bending action about the minor axis:

My, = min{F,Z,, 1.6F,S,} (15)

where S,and Z, denote the elastic and plastic section modulus about the minor axis,

respectively.
The nominal bending strength about the minor axis is also checked due to local buckling
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(m

ny1

IA

Apf

Mnyz = (16)

A—2
My — (Mnyl - 0'7Fy5y) <ﬁ>

S| T |

> Aps

where b and h denote the unconfined parts of the flange and web, respectively.

2.1.4 Flexural Members: Box-Shaped Sections
For cross sections of symmetric Box-shape, the nominal bending capacity is given by:

M,, = min{My,, My, M3} 17)
My, = F,Z (18)
M b < 1.12 £
ni - =4 e
ty B,
an =4 (19)
b |F, b E
Mpy — (Mpy — F,S)|3.57— |=—4| < My, —>112 |[—
tryE f E
\
(M ho 5.7 £
nl t, E,
M5 =4 (20)
My, — (M F5)0305h E _o738l<m " o5 |2
ni ni y : ty Fy . = Mn1q ., . Fy

\

where S and Z stand for the elastic and plastic section moduli about the bending axis,
respectively.

2.2 Shear Strength Control

For the members in bending the shear stress ratio should also be checked via the
following relation:

Y

SyShear —
W

(21)

where 1V}, stands for the nominal shear strength calculated using the web area and the
yield stress due to the design code regulations [40]. For the employed sections, the shear
strength reduction factor is ¢, = 0,9. The following constraint is then checked for
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combination of flexural, axial and shear actions:

max{SreAxiFlex’Sreshear} -1<0 (22)

2.3 Torsional Behavior

For the members in torsion the design strength T, and the reduction factor ¢, are
implemented as:

Te = @rTy (23)
The corresponding nominal strength in torsion T, , is given by:

T, = F,C (24)

Then taking the critical stressF,, and the factor C from the design code relations [40], the
corresponding combined stress ratio is given by:

P, 4 Tu]2<1 (25)

M
SC:[—”+—]+[—+—
R V7R B A

3. THE OPTIMIZATION ALGORITHM

Recently, a number of nature-inspired optimization methods are introduced based on birds
of prey behavior [28,42-44]. Among which, Falcon Optimization Algorithm (FOA) is
concerned here that simulates hunting actions of falcons to catch their prey [28]. Falcon can
adopt its hunting flight in three stages: i) seeking for the prey, ii) logarithmic-path flying to
adjust the dive and iii) diving to catch the prey when close enough. At the first two stages,
Falcon keeps an eye at the prey by looking sideways while in the third stage it uses
binocular vision [45,46]. If the dive was not successful, Falcon may favor flaying back
based on its cognitive experience. They can also compete each other as a common behavior
in several birds of prey. Steps of the utilized FOA for the current structural optimization are
as follows:
Step 1. Set the control parameters of the algorithm.

Step 2. At the first iteration, generate Ne randomly generated vectors based on uniform
distribution as initial population of artificial birds. It is performed for every i individual
by:

Xi=X,+R® Xy —X.) (26)

where X; is a D-dimensional vector between its lower and upper bounds of X; and
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Xy, respectively. The sign ® stands for component-wise product while the function R is a
D-dimensional vector of random numbers given as:

R={r|-1<1r<1j=12..,D} (27)
Initiate the limiting velocity vectors V™" and V™% py:
ymex — _pymin — a(XU _ XL) (28)

The factor & is a positive control parameter lower than unity.

Step 3. Set the iteration number tot =1, Decode every individual vector in the population
to the corresponding structural model. Determine the constraints and their violation via
structural analysis and calculate the structural weight. Then use them to evaluate fitness of
each corresponding design vector. Initiate the global best position X[,. . as the fittest

individual over the entire population.
Step 4. Increase the iteration number t by 1. Repeat the following main loop until the
stopping criterion is satisfied:

- For the bird numberi from 1 to "\* create a candidate individual XxfFand gs:
o If arandom number with uniform distribution returned by the function I' falls
below AP, generate XF*"? by:

XS = XEL 4 Vi 1€ (Xt — XE1) + G (ke — X)) 29)

where X[ ... denotes the best experience of each bird and X};,4,stands for
the best position among of all of them. V£~ gives the velocity of the ith bird. The
cognitive and social factors are given by ¢, andc, , respectively.
o otherwise
= If the function I returns a value greater than DP, perform logarithmic
flight as:
xfond = x4 rel (X, - X{7) (30)
where X stands for a randomly picked bird over the population and bisa
fixed control parameter.

= Generate candidate solutionXf*"® by flying toward X_ as a randomly

chosen falcon in the population when X_ is fitter than the current falcon.
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xfemd = x4+ vE v rf (X — XY (31)
otherwise form X% by a fly-back as:
XEmd = X{T VT +rCe(Xippese — Xi ) (32)
Check for the velocity limit and fix the candidate solution by:
xfond = XE1 + min(V™9Y, max (V™ xfend — xE1)) (33)
This way, the new velocity vector is forced to fall between V™" and

V max

o Associate the design variables in X£%"® with their corresponding section indices
and decode the candidate vector to the structural model.
o Analyze the structural model to evaluate fitness of the candidate vector.

o Greedy selection: Replace X with X£o"4 if X£*"4is fitter than it.

o Update Xifp best

- Update X!

gbest

t
Step 5. Announce X gpes as the best solution obtained to the optimization problem.

Stopping criterion can be taken either t=lter,, or NFE = NFEmaX. The iteration number

is denoted bytwhile NFE stands for the number of objective function evaluations. In this
study the former criterion is applied. Thus, the proposed optimization algorithm has

AP,DP,a.b.c,c;, f. as its specific control parameters in addition to the common
N

Iter.,,

parameters of "* and

4. NUMERICAL INVESTIGATION

A number of diagrid models with various heights are considered for design optimization.
Constructional material is Steel of the European grade St-37 with the yield stress of 235MPa |

3
elastic modulus of 290GPagnqg density of 7849kg/M” " Each model s subjected to
simultaneous gravitational and lateral wind loading based on regulations of INBC [46].
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Table 1: Loading combinations

Load Dead Live Wind
Combination Load Load load
1 1.4 0 0
2 1.2 1.6 0
3 1.2 0 0.7
4 1.2 1 1.4
5 0.9 0 1.4

Table 1 gives the code-based loading combinations applied in designing diagrids. Such

models are assumed to be built on a region with the reference wind velocity of 130km/h
INBC regulations exert wind load as pressure on windward, leeward and other sides of the
building after generating the height-wise pressure profile from the base-wind-pressure. The
height-wise distribution of windward pressure is given by INBC as:

Py = Pyl CoCyCp (34)

The base-wind-pressure is denoted by P,. The factors 1,,C,C,Cp are calculated due to the

INBC design code to distribute Pramong the height and different sides of the building
structure. Figure 1 demonstrates schematic wind loading on a three-dimensional model due
to INBC procedure.

In the present work, gravitational and wind loadings are spatially exerted on three-
dimensional symmetric models; however, they are then reduced into equivalent planar
models to allow faster analysis and convergence during optimal design due to high
cardinality of the search space. Diagrid examples are considered with three different
number of stories as depicted in Figure 2.
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Figure 1: Typical wind loading profile: (a) 3D view, (b) side view and (c) plan view
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Figure 2: Variation of diagrid height (number of stories) in the treated examples

Geometry of a diagrid model may vary with variation of diagonal angles with respect to
the horizon. It is worthy to notify that such angles cannot take all continuous values for a
prescribed story height and bay length. Instead, they can be associated with some discrete
values by varying the number of stories and/or bays that are covered in the diagrid module.
A regular diagrid is distinguished with uniform angle and topological density of diagonal
members among the structure. For example, a 20-story regular diagrid can be subdivided
into 5 four-story panels, each one covered by a single diagonal unit among its height.
Alternatively, it can also be subdivided into 20 one-story panels or 10 two-story panels. For
the story-height of 3m and the bay-length of 4m, there are three alternative angles: 56.3°,
71.6°and80.5°. Figure 3 illustrates three possible configurations for 20-story diagrids with
identical plan. The effect of soil flexibility on the optimal design is also modeled by
inserting vertical springs beneath the foundations.

In the present study, the planar diagrid models are named by the general notation of. nJé
For each specific model, n is replaced with the corresponding number of stories, ¢ denotes
the diagrid angle with the horizontal line and J is replaced with rfor the rigid-base models
or with f for the case of flexible-base. For example, 20f71 stands for the 20-story model on

the flexible-soil having the uniform diagrid angle of 71.6°.
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Figure 3: Variation of diagrid angle in the 20-story example: (a) 56.30, (b) 71.6 0 and (c)

For any diagrid angle, the optimization is started from identical population to preserve
true comparison between the rigid-base and the flexible-base cases. The control parameters
of the algorithm are applied in accordance with Table 2. Notation of the diagrid models with
various diagonal angles and boundary conditions are given in Table 3 together with the
search space cardinality of each case. It can be noticed that such models constitute discrete
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optimization problems with the search space sizes in the orders of 10° t010° .

Table 2: Applied control parameters of the proposed FOASs

Common Specific
parameters parameters
N, lter,, AP DP o b ¢ ¢ f
15 300 0.1 0.8 0.1 1.0 20 2.0 2.0

Table 3: General characteristics of the treated diagrid models

Number of

Boundary

Search Space

Model ID stories condition at base Diagrid angle D Cardinality
12r56 12 Rigid 56.3° 15 28% ~5.1x10*
12f56 12 Flexible 56.3° 15 28" ~5.1x10*
12r71 12 Rigid 71.6° 9 28° ~1.0x10%
12f71 12 Flexible 71.6° 9 28° ~1.0x10"
12r80 12 Rigid 80.5° 6 28° ~ 4.8x10°
1280 12 Flexible 80.5° 6 28° ~ 4.8x10°
20r56 20 Rigid 56.3° 24 28* ~54x10*
2056 20 Flexible 56.3° 24 28* ~54x10*
20r71 20 Rigid 71.6° 15 28% ~5.1x10%
2071 20 Flexible 71.6° 15 28% ~5.1x10*
20r80 20 Rigid 80.5° 10  28%~29x10"

20f80 20 Flexible 80.5° 10

28" ~2.9x10"
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30r56 30 Rigid 56.3° 36 40%° ~4.7x10%
30f56 30 Flexible 56.3° 36 40% ~ 4.7x10%
30r71 30 Rigid 71.6° 23 40% ~7.0x10%
30f71 30 Flexible 71.6° 23 40% ~7.0x10%*
30r80 30 Rigid 80.5° 16 40" ~4.3x10%®
30f80 30 Flexible 80.5° 16 40" ~4.3x10%®

For the sake of conciseness, one case of flexible soil is considered against the rigid-base
boundary condition. Applying three height alternatives (12, 20 and 30 stories), three possible
angles for the regular diagrids and two cases of boundary conditions; a total of 18 distinct
models are studied. Note that since FOA is a stochastic algorithm, it is required to perform
several independent runs (at least 10) for every distinct model to take sufficiently reliable
statistical results. According to Table 2, every optimization run in our study needs at least
4500 structural analyses. The mater makes sense about how computationally expensive is
such a task and why static analyses are used for the optimal design. For such a design
procedure the code of practice [44] offers to consider the effect of turbulences on taller
examples by applying proper values of C, .

According to INBC as the design code, soil types are distinguished in 4 groups. The
soil type 1V is too loose to withstand loadings in high-rise buildings. Therefore, the soil type
[11 is considered in the current study; for which the shear wave velocity V, varies between
175m/s to 375m/s [47]. Here the mean value in such a range is considered to derive the

soil shear modulus by the following well-known relation:

G ==V (35)

Where V. stands for the mean shear wave velocity in top 30 meters of the soil with the
density of y, and g = 9.807 N/kg denotes the gravitational constant. The stiffness of the
equivalent spring for such a soil type is derived based on the soil shear modulus G and
Poisson ratiov. It is given by [48] for a square foundation with the width B in the vertical
and horizontal directions as:

y
K, = 454GB— (36)

1
K, = 9.00GB ——
x = 9.006B -— (37)

Assuming V, = 275m/s in average for a soil type Il with the density of 1800kg/m®,
leads to K, =1795MN /m as the vertical stiffness of the equivalent springs while K, =2.72K,

for a Poisson ratio of 0.3. Every such spring is joined with the base node in the
corresponding diagrid model. Stiffness matrix of a linear spring with two nodes, is
implemented in the following form:
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_ ks _ks
ke B [_ks ks ] (38)
Once the second node of such a spring is attached to a Degree Of Freedom (DOF) at the

structure’s base, the second diagonal of the above matrix is assembled to that DOF in the
total stiffness matrix. The stiffness coefficient k, in the matrix K, can represent k, or k, for

a horizontal or a vertical soil spring, respectively.

4.1 The 12-Story Example

This example is designed with diagrid angles of56.3°, 71.6° and80.5° using the discrete list
of structural sections given in Table 4. For each angle two boundary conditions are also
applied; i.e. the rigid and the flexible foundation models. Configuration and member
grouping of the models are demonstrated in Figures 4 and 5. It can be noted that switching
the boundary condition does not alter the member grouping. The first model is characterized
with 15 member groups while the second and the third include 9 and 6 groups, respectively.
Noting that such member groups correspond the design variables to be associated with the
section indices of Table 4, the search space cardinality will be of different orders from 10* in
the 56.3°models to 10° in the 80.5° ones.

RV AVATAVAVAY,
JAVAVAVAVAVA
AVAVAVAVAVAY]

YATATATATAT
FRVAVAVAVAVA
ﬂﬁmmﬂ'

AVAVAVAVAVA
VAVAVAVAVA
NYYYY

(b)
Figure 4: Configuration and member grouping of the diagrid models: (a) 12f56 and (b) 12r56

Table 5 compares the section indices and optimal weight results between 12r56 and
12156 models. It is noted that for the diagrid angle of56.3°, the optimal design on flexible
soil has heavier weight than with the rigid boundary condition. The best weight for 12r56
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and 12f56 models are nearly 36.0 ton and 45.9 ton, respectively. A similar trend is observed
in the corresponding mean results of 40390.30 kg and 41975.18 kg, respectively.

Table 4: List of available sections for the 12-storz and 20-storz diagrid models

Section ID Section Name Area (10*m?) | Section ID Section Name Area (10“m?)
1 W10x19 36.26 15 W12x72 136.13
2 W10x33 62.65 16 W12x79 149.68
3 W10x39 74.19 17 W12x87 165.16
4 W10x49 92.90 18 W12x96 181.94
5 W10x54 101.94 19 W14x22 41.87
6 W10x60 113.55 20 W14x43 81.29
7 W10x77 145.8 21 W6x15 28.58
8 W12x19 35.94 22 W6x20 37.87
9 W12x26 49.35 23 W8x24 45.68
10 W12x30 56.71 24 W8x28 53.23
11 W12x45 85.16 25 W8x31 58.90
12 W12x53 100.64 26 W8x35 66.45
13 W12x58 109.68 27 BOX 400X20mm 304.00
14 W12x65 123.23 28 BOX 550X25mm 525.00

Table 5: Optimization results for 12r56 and 12f56 models

Group number Diagrid Model
12r56 12f56
1 19 11
2 23 11
3 8 9
4 10 9
5 21 10
6 8 8
7 22 24
8 3 12
9 25 23
10 8 8
11 6 8
12 9 23
13 19 14
14 8 10
15 14 14
Best weight (kg) 36017.52 45895.33
Mean weight (kg) 40390.30 41975.18
C.V. 0.06 0.07

Table 6: Oetimization results for 12r71 and 12f71 models

Group number Diagrid Model
12r71 1271
1 21 8
2 21 22
3 8 1
4 9 10
5 23 21
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6 19 21
7 21 10
8 13 9
9 12 12
Best weight (kg) 31851.99 28896.70
Mean weight (kg) 32078.99 31436.72
C.V. 0.06 0.06

Table 6 shows a different trend for the diagrid angle of 71.6°. In this case, the 12f71
model has led to smaller weight than the corresponding rigid-base model; both in the best
and mean results. The best designs for the 12r71 and 12f71 models weigh almost 31.9 ton
and 28.9 ton, respectively.

For the angle of80.5°, the results are briefed in Table 7. It can be noticed that the best
weight is obtained 41.7 ton for the rigid-base that is slightly lower than 45.7 ton for the
flexible-base; however, the corresponding mean results exhibit a reverse order.
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Figure 5: Configuration and member grouping of the diagrid models: (a) 12r71 and (b) 12r80

Figure 6 compares convergence traces of the 12-story diagrid models; denoting the
flexible cases with dashed lines. The first rank over the rigid-base models, belongs to 12r71
weighing 31852 kg while 12r56 and 12r80 stand on the 2" and 3" ranks, respectively.
Furthermore, it is found that the 12f71 can withstand the loading combinations with the
lowest weight of 28896.70 kg among all the others. It is 20% and 31% lighter than the best
optimal weight in the 56.3° and 80.5° cases, respectively.
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Figure 6: Convergence curves for optimization of the 12-story diagrid models
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Figure 7: Constraint satisfaction in the best design of 12-story diagrid

Figure 7 confirms how such a design has satisfied the stress constraint over the structural
elements under the load combinations of Table 1. It can be noticed that the highest stress
ratio has approached the allowable limit of 1 in the feasible 12r71 model with the cardinality
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of 10°. Due to the proposed formulation of the optimization problem, activating such a

behavior constraint can declare optimal use of the construction material; however, the side
constraints are preserved by selecting form the available list of sections.

Table 7: Oetimization results for 12r80 and 12f80 models

Group number Diagrid model
12r80 1280

1 21 8

2 22 19

3 8 25

4 8 1

5 25 25

6 27 27
Best weight (kg) 41785.08 45741.73
Mean weight (kg) 50886.74 43599.64

C.V. 0.45 0.18

4.2 The 20-Story Example

This example is modeled with three different diagrid angles of Figure 3; each one studied
via two boundary conditions. The corresponding member groupings are given by Figures 8
and 9. Twenty-eight available sections of Table 4 are employed for sizing optimization of
the 20-story models.

According to Table 3, cardinality of the search space in the 56.3°case is5.4x10%; i.e.
about10®times larger than the corresponding case in the previous example. The lowest
cardinality among 56.3°, 71.6°and 80.5° cases, belongs to the latter one; that is of the order
10*.

According to Figure 10, in 56.3° and 80.5° cases, the rigid-base boundary condition has
led to lighter weight than the flexible-base. Tables 8 and 9 confirm such a trend for the mean
results; however, it is not the case in Table 10.

Figure 10 also reveal that the best optimal weight among 20-story models belongs to
20f71. According to Figure 10, the final stages of convergence curves for the rigid-base
cases have fallen below the flexible-cases except the flexible-case of 12f71 model. Table 9
reveals the least weight of 52083.13 kg for 20f71 that is 20% lighter than 20r71.
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Figure 8: Configuration and member grouping of the diagrid models: (a) 20f56 and (b) 20r56

Such an optimal weight is also more than 30% lighter than the best results of 56.3°and

80.5° cases. It can be observed in Figure 11 that 20f71 design has successfully satisfied the
stress constraint. Furthermore, activation of such a behavior constraint confirms that 20-
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story diagrid with the angle of 71.6° at flexible soil has optimally used the material strength
to withstand the loading combinations of Table 1.
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Figure 9: Configuration and member grouping of the diagrid models: (a) 20f71 and (b) 20r80

4.3 The 30-Story Example

Here, a taller example with 30-stories is studied. The spatial diagrids have been reduced
to their planar equivalent models as depicted in Figures 12 and 13. For such a large-scale
example some heavier sections are needed to withstand the applied loadings. Therefore, a
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larger set with respect to previous examples is applied within 40 sections of Table 11. The
models are distinctly optimized in three cases of diagrid angles; i.e.56.3°, 71.6°and80.5°
applying the flexible and rigid-base boundary conditions. Due to the number of member
groups and available sections, the corresponding search space cardinalities are reported in
Table 3 that are considerably higher than previous examples.

Figure 14 shows convergence curves of the best designs for each case of this examples.
It can be realized that 30r56 has ended with the heaviest design while the final weights of
30r71and 30r80 have fallen between the least weight by 30f71 and the results of the other
cases. Further information can be derived from Tables 12-14. For the56.3° case, Table 12
reveals that despite some previous examples, 30f56 has led to less weights than 30r56 both
in the best and mean results. Table 14 reports similar trend in the mean results of the 80.5°
case. However, the best results of this case do not obey such a trend.

Table 8: Oetimization results for 20r56 and 20f56 models

Group Diagrid model
number
20r56 2056
1 8 1
2 8 8
3 11 8
4 12 23
5 9 23
6 11 26
7 21 23
8 7 1
9 21 5
10 21 13
11 19 26
12 16 23
13 9 8
14 21 21
15 25 22
16 8 21
17 1 1
18 19 5
19 6 8
20 24 17
21 16 18
22 22 9
23 21 11
24 18 18
Best weight (kg) 79365.04 85721.58
Mean weight (kg) 90100.81 91167.51
C.V. 0.08 0.06
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According to Table 13, the optimal design of 30f71 has led to the least weight of
99199.61 kg that is 12% lighter than the best result of 30r71. Meanwhile, the mean results of
30r71 and 30f71 show just a 4% difference.
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Figure 10: Convergence curves for optimization of the 20-story diagrid models

Table 9: Optimization results for 20r71 and 20f71 models
Group number Diagrid model

20r71 2071

1 23 9

2 25 9

3 1 9

4 1 1

5 26 8

6 6 8

7 1 21

8 26 20

9 1 10

10 24 8

11 10 9

12 10 23

13 5 22

14 3 23

15 16 16
Best weight (kg) 65868.56 52083.13
Mean weight (kg) 62827.52 64763.77

C.V. 0.06 0.10
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Table 10: Oetimization results for 20r80 and 20f80 models

Group number  Diagrid model

20r80 20f80

1 23 13

2 21 19

3 8 1

4 21 9

5 19 21

6 21 22

7 20 10

8 22 21

9 25 22

10 28 28
Best weight (kg) 75829.08 82142.36
Mean weight (kg) 140713.50 104619.60

C.V. 0.62 0.47

20 story diagrid angle:71
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Figure 11: Constraint satisfaction in the best design of 20-story diagrid

5. DISPLACEMENT AND DRIFT RESPONSES

One of the common issues in design of high-rise buildings is to confine story sways against
lateral loading. Although diagrid has already been reported as an efficient structural system
to withstand lateral loads [1], such an issue is further studied in the present study, after
weight minimization of the diagrid models.
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Table 11: List of available sections for the 30-storx diagrid models

Section ID  Section Name Area (10”m?) | Section ID  Section Name Area (10*m?)
1 W10X19 36.26 21 W8X24 45.68
2 W10X33 62.65 22 W8X28 53.23
3 W10X39 74.19 23 W8X31 58.90
4 W10X49 92.9 24 WB8X35 66.45
5 W10X54 101.94 25 W8X40 75.48
6 W10X60 113.55 26 W8X48 90.97
7 W10X77 145.81 27 W12X120 227.74
8 W12X19 35.94 28 W12X136 257.42
9 W12X26 49.35 29 W12X152 288.39
10 W12X30 56.71 30 W12X170 322.58
11 W12X45 85.16 31 HSS14X14X5/16 101.29
12 W12X53 100.64 32 HSS16X16X5/16 116.77
13 W12X58 109.68 33 HSS16X16X5/8 225.81
14 W12X65 123.23 34 BOX 300X20mm 224.00
15 W12X72 136.13 35 BOX 400X20mm 304.00
16 W12X79 149.68 36 BOX 500X25mm 475.00
17 W12X87 165.16 37 BOX 550X25mm 525.00
18 W12X96 181.94 38 BOX 600X25mm 575.00
19 W14X22 41.87 39 BOX 700X25mm 675.00
20 W14X43 81.29 40 BOX 700X30mm 804.00

Figure 16 illustrates profiles of lateral displacement vs. the structural height (the story
number). It is evident that all the models have a general trend of sway increase with height;
in agreement with cantilever truss-like behavior of such lateral-resisting systems. However,
the range of maximum displacements increases for the taller diagrid systems. It can also be
noticed that the configurations of 80.5° show more difference with the other two angles and
critically highlights the difference between flexible and fixed-base cases. The difference
between 56.3°and 71.6° configurations is more for lower-rise 12-story model. Furthermore,
sway trend of 71.6° geometry has approached the 56.3° case in the taller models with 20 and
30 stories; indicating superiority of such configuration. Table 15 better declares how story-
displacements increase with the structural height for every distinct case of diagrid geometry.
It can be derived that the ratio of maximum lateral displacement over the total structural
height, is confined to 0.003, 0.006 and 0.010 in the 12, 20 and 30 story examples,
respectively.

Figure 17 reveals the differences between the considered models from another point of
view; that is variation of inter-story drifts with the floor level. The 80-5°configuration,
exhibits severer fluctuations in drift profile with respect to the other diagrid geometries.
More uniform variation of inter-story drift with height can be found in the flexible-based
models. Similar to lateral displacements; such drift values are in greater range for taller
examples.

It can be realized that the drift ratio falls below one percent of the story height in most
cases except 30f80 (and slightly in 30f56 and 30r80). According to Figure 19, the diagrid
angle of 80-5° constitutes the most critical cases of lateral displacements. In this regard,


http://dx.doi.org/10.22068/ijoce.2024.14.4.605
https://sae.iust.ac.ir/ijoce/article-1-605-en.html

[ Downloaded from sae.iust.ac.ir on 2025-11-19]

[ DOI: 10.22068/ijoce.2024.14.4.605 ]

OPTIMAL DESIGN OF REGULAR DIAGRID SYSTEMS WITH DISCRETE ...

527

71.6° has been the best angle in 20- and 30-story examples, while the first rank in 12-story
models belongs to the diagrid angle of 56-3° .
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Table 12; Oetimization results for 30r56 and 30f56 models

Group Diagrid model
number
30r56 30156
1 27 25
2 22 23
3 21 19
4 26 25
5 26 26
6 20 21
7 26 22
8 23 22
9 11 8
10 8 10
11 20 15
12 6 9
13 19 21
14 10 10
15 20 21
16 21 22
17 21 25
18 19 20
19 11 17
20 26 24
21 18 20
22 21 20
23 26 26
24 22 13
25 25 23
26 14 11
27 20 27
28 26 25
29 23 25
30 23 23
31 21 21
32 19 19
33 22 21
34 21 23
35 20 22
36 36 36
Best weight (kg) 151649.20 146213.30
Mean weight (kg) 185062.70 182191.40
C.V. 0.14 0.14
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Figure 13: Configuration and member grouping of the diagrid models (a) 30r71 and (b)
30r80
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Table 13: Oetimization results for 30r71 and 30f71 models

Group Diagrid model
number
30r71 30f71

1 11 26
2 9 21
3 25 21
4 17 22
5 24 23
6 25 25
7 21 22
8 16 23
9 25 19
10 21 21
11 21 21
12 19 22
13 1 13
14 21 20
15 9 9

16 15 14
17 1 23
18 32 22
19 8 10
20 5 22
21 21 24
22 9 19
23 35 29

Best weight (kg) 113165.1 99199.61
Mean weight (kg) 122725.1 127888.1
C.V. 0.08 0.17

The drift values are summarized in Table 16; exhibiting similar trend. The greatest drifts in
different heights; i.e. 1.5, 2.9 and 4.8cm belong to the 12r80, 20f80 and 30f80 models,
respectively. It indicates that the angle of 80.5° has been the worst case in decreasing the
inter-story drifts. In the other hand, the least drifts in 20- and 30-story models belong to the
71.6° configuration on fixed-base by 0.21cm and 0.99 cm; i.e. 34% and 48% of the
corresponding largest values, respectively. Such a ratio is at most 14% among the 12-story
models that indicates higher effect of geometry in the lower-rise example. Maximum drift
values are graphically compared in Figure 18. It can be realized that drift ratio falls below
one percent.

Table 14: Optimization results for 30r80 and 30f80 models
Group Diagrid model

number
30r80 30180
1 19 19
2 24 19

3 13 22
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Best cost

4 22 23
5 21 26
6 8 20
7 23 12
8 23 31
9 23 31
10 1 10
11 22 23
12 19 24
13 19 23
14 10 15
15 10 15
16 40 40
Best weight (kg) 106882.9 136111.4
Mean weight (kg) 164829.9 155718.5
C.V. 0.41 0.33
5
3510
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Figure 14: Convergence curves for optimization of the 30-story diagrid models
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Figure 15: Constraint satisfaction in the best design of 30-story diagrid
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Table 15: Maximum lateral displacements (cm) in the diagrid models

(n) (n)r56 (56 (mr7l  (N)f71  (n)r80  (n)f80
12 2.6 1.9 4.0 3.5 9.3 7.6
20 16.6 19.1 14.6 16.2 34.6 23.7
30 65.4 79.6 49.3 63.4 64.4 92.1

Table 16: Maximum inter-story drift (cm) in the diagrid models

(n) (n)r56 (mMf56  (mr7l  (M)f71  (Nr80  (n)f80
12 0.3 0.2 0.9 0.4 15 1.3
20 1.0 1.2 1.0 1.4 2.8 2.9
30 2.9 3.4 2.3 2.8 3.1 4.8
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Figure 18: Maximum inter-story drift in the optimal diagrid models
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Figure 19: Maximum lateral displacement in the optimal diagrid models
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6. CONCLUSION

In the present work, the structural weight was minimized subject to LRFD constraints on
axial, flexural and shear behavior of all frame and diagonal elements of diagrid models. A
variant of Falcon optimization algorithm was utilized to deal with practical section indices
as discrete design variables to ensure that no approximation of structural properties affects
the optimization results.

The design examples covered variation in diagrid geometry, its height and boundary
condition regarding the effect of soil flexibility beneath the foundation. The angle of
diagonal members with the horizontal line governs the diagrid geometry variation as the
story height and bay length are fixed. According to the numerical results, the diagrid
geometry has considerable effect on its optimal sizing design as well as the search space
cardinality. Such a cardinality varied from to among the treated models. Proper
convergence of the optimal process in such large-scale discrete problem was observed via
histories of the global-best objective function.

In conclusion, the present study reveals how different angles in regular diagrids can change
its optimal design against lateral forces such as wind loading in addition to gravitational
loads. The effect of considering the soil flexibility beneath the foundations, depends on the
diagrid angle and also its number of stories. For the regular diagrids of the present work, the
angle was uniform among the structural height that brings about ease of practical design and
fabrication. It is noted that the presented results are reliable for the employed design method
and assumptions on the wind loading and soil conditions. More rigorous study of soil-
structure interaction by nonlinear analyses and variation among the bays and stories of the
diagrid structure will be of course a future scope of work.
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